Lösung 2.1:3c
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
			  			                                                      
		          
			| K  | |||
| Zeile 1: | Zeile 1: | ||
| If we multiply the factors in the integrand together and use the power laws, | If we multiply the factors in the integrand together and use the power laws, | ||
| + | {{Displayed math||<math>\begin{align} | ||
| + | \int e^{2x}\bigl(e^x+1\bigr)\,dx | ||
| + | &= \int\bigl(e^{2x}e^{x} + e^{2x}\bigr)\,dx\\[5pt] | ||
| + | &= \int\bigl(e^{2x+x} + e^{2x}\bigr)\,dx\\[5pt] | ||
| + | &= \int{\bigl(e^{3x} + e^{2x}\bigr)}\,dx\,,  | ||
| + | \end{align}</math>}} | ||
| - | <math> | + | we obtain a standard integral with two terms of the type <math>e^{ax}</math>, where  | 
| - | + | <math>a</math> is a constant. The indefinite integral is therefore  | |
| - | + | ||
| - | + | ||
| - | + | {{Displayed math||<math>\int \bigl(e^{3x}+e^{2x}\bigr)\,dx = \frac{e^{3x}}{3} + \frac{e^{2x}}{2} + C\,,</math>}} | |
| - | <math>e^{ | + | |
| - | + | ||
| - | + | ||
| - | + | where <math>C</math> is an arbitrary constant. | |
| - | + | ||
| - | + | ||
| - | where  | + | |
| - | <math>C</math> | + | |
| - | is an arbitrary constant. | + | |
Version vom 13:19, 21. Okt. 2008
If we multiply the factors in the integrand together and use the power laws,
| \displaystyle \begin{align} \int e^{2x}\bigl(e^x+1\bigr)\,dx &= \int\bigl(e^{2x}e^{x} + e^{2x}\bigr)\,dx\\[5pt] &= \int\bigl(e^{2x+x} + e^{2x}\bigr)\,dx\\[5pt] &= \int{\bigl(e^{3x} + e^{2x}\bigr)}\,dx\,, \end{align} | 
we obtain a standard integral with two terms of the type \displaystyle e^{ax}, where \displaystyle a is a constant. The indefinite integral is therefore
| \displaystyle \int \bigl(e^{3x}+e^{2x}\bigr)\,dx = \frac{e^{3x}}{3} + \frac{e^{2x}}{2} + C\,, | 
where \displaystyle C is an arbitrary constant.
 
		  