Lösung 2.1:3c

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
If we multiply the factors in the integrand together and use the power laws,
If we multiply the factors in the integrand together and use the power laws,
 +
{{Displayed math||<math>\begin{align}
 +
\int e^{2x}\bigl(e^x+1\bigr)\,dx
 +
&= \int\bigl(e^{2x}e^{x} + e^{2x}\bigr)\,dx\\[5pt]
 +
&= \int\bigl(e^{2x+x} + e^{2x}\bigr)\,dx\\[5pt]
 +
&= \int{\bigl(e^{3x} + e^{2x}\bigr)}\,dx\,,
 +
\end{align}</math>}}
-
<math>\begin{align}
+
we obtain a standard integral with two terms of the type <math>e^{ax}</math>, where
-
& \int{e^{2x}}\left( e^{x}+1 \right)\,dx=\int{\left( e^{2x}e^{x}+e^{2x} \right)}\,dx \\
+
<math>a</math> is a constant. The indefinite integral is therefore
-
& =\int{\left( e^{2x+x}+e^{2x} \right)}\,dx=\int{\left( e^{3x}+e^{2x} \right)}\,dx \\
+
-
\end{align}</math>
+
-
we obtain a standard integral with two terms of the type
+
{{Displayed math||<math>\int \bigl(e^{3x}+e^{2x}\bigr)\,dx = \frac{e^{3x}}{3} + \frac{e^{2x}}{2} + C\,,</math>}}
-
<math>e^{ax}</math>, where
+
-
<math>a</math>
+
-
is a constant. The indefinite integral is therefore
+
-
 
+
where <math>C</math> is an arbitrary constant.
-
<math>\int{\left( e^{3x}+e^{2x} \right)}\,dx=\frac{e^{3x}}{3}+\frac{e^{2x}}{2}+C</math>
+
-
 
+
-
where
+
-
<math>C</math>
+
-
is an arbitrary constant.
+

Version vom 13:19, 21. Okt. 2008

If we multiply the factors in the integrand together and use the power laws,

\displaystyle \begin{align}

\int e^{2x}\bigl(e^x+1\bigr)\,dx &= \int\bigl(e^{2x}e^{x} + e^{2x}\bigr)\,dx\\[5pt] &= \int\bigl(e^{2x+x} + e^{2x}\bigr)\,dx\\[5pt] &= \int{\bigl(e^{3x} + e^{2x}\bigr)}\,dx\,, \end{align}

we obtain a standard integral with two terms of the type \displaystyle e^{ax}, where \displaystyle a is a constant. The indefinite integral is therefore

\displaystyle \int \bigl(e^{3x}+e^{2x}\bigr)\,dx = \frac{e^{3x}}{3} + \frac{e^{2x}}{2} + C\,,

where \displaystyle C is an arbitrary constant.