Lösung 2.1:3c
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K |
|||
Zeile 1: | Zeile 1: | ||
If we multiply the factors in the integrand together and use the power laws, | If we multiply the factors in the integrand together and use the power laws, | ||
+ | {{Displayed math||<math>\begin{align} | ||
+ | \int e^{2x}\bigl(e^x+1\bigr)\,dx | ||
+ | &= \int\bigl(e^{2x}e^{x} + e^{2x}\bigr)\,dx\\[5pt] | ||
+ | &= \int\bigl(e^{2x+x} + e^{2x}\bigr)\,dx\\[5pt] | ||
+ | &= \int{\bigl(e^{3x} + e^{2x}\bigr)}\,dx\,, | ||
+ | \end{align}</math>}} | ||
- | <math> | + | we obtain a standard integral with two terms of the type <math>e^{ax}</math>, where |
- | + | <math>a</math> is a constant. The indefinite integral is therefore | |
- | + | ||
- | + | ||
- | + | {{Displayed math||<math>\int \bigl(e^{3x}+e^{2x}\bigr)\,dx = \frac{e^{3x}}{3} + \frac{e^{2x}}{2} + C\,,</math>}} | |
- | <math>e^{ | + | |
- | + | ||
- | + | ||
- | + | where <math>C</math> is an arbitrary constant. | |
- | + | ||
- | + | ||
- | where | + | |
- | <math>C</math> | + | |
- | is an arbitrary constant. | + |
Version vom 13:19, 21. Okt. 2008
If we multiply the factors in the integrand together and use the power laws,
\displaystyle \begin{align}
\int e^{2x}\bigl(e^x+1\bigr)\,dx &= \int\bigl(e^{2x}e^{x} + e^{2x}\bigr)\,dx\\[5pt] &= \int\bigl(e^{2x+x} + e^{2x}\bigr)\,dx\\[5pt] &= \int{\bigl(e^{3x} + e^{2x}\bigr)}\,dx\,, \end{align} |
we obtain a standard integral with two terms of the type \displaystyle e^{ax}, where \displaystyle a is a constant. The indefinite integral is therefore
\displaystyle \int \bigl(e^{3x}+e^{2x}\bigr)\,dx = \frac{e^{3x}}{3} + \frac{e^{2x}}{2} + C\,, |
where \displaystyle C is an arbitrary constant.