Lösung 2.1:3b
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K |
|||
| Zeile 1: | Zeile 1: | ||
As the integral stands, it is not so easy to see what the primitive functions are, but if we use the formula for double angles, | As the integral stands, it is not so easy to see what the primitive functions are, but if we use the formula for double angles, | ||
| + | {{Displayed math||<math>\int 2\sin x\cos x\,dx = \int \sin 2x\,dx</math>}} | ||
| - | + | we obtain a standard integral where we can write down the primitive functions directly, | |
| + | {{Displayed math||<math>\int \sin 2x\,dx = -\frac{\cos 2x}{2}+C\,,</math>}} | ||
| - | + | where <math>C</math> is an arbitrary constant. | |
| - | + | ||
| - | + | ||
| - | <math> | + | |
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | is an arbitrary constant. | + | |
Version vom 13:13, 21. Okt. 2008
As the integral stands, it is not so easy to see what the primitive functions are, but if we use the formula for double angles,
| \displaystyle \int 2\sin x\cos x\,dx = \int \sin 2x\,dx |
we obtain a standard integral where we can write down the primitive functions directly,
| \displaystyle \int \sin 2x\,dx = -\frac{\cos 2x}{2}+C\,, |
where \displaystyle C is an arbitrary constant.
