Lösung 2.1:2d
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
			  			                                                      
		          
			| K  | |||
| Zeile 1: | Zeile 1: | ||
| - | If we rewrite  | + | If we rewrite <math>\sqrt{x}</math> as <math>x^{1/2}</math>, the integrand can then be simplified using the power laws, | 
| - | <math>\sqrt{x}</math> | + | |
| - | as  | + | |
| - | <math>x^ | + | |
| + | {{Displayed math||<math>\int\limits_1^4 \frac{\sqrt{x}}{x^2}\,dx = \int\limits_1^4 \frac{x^{1/2}}{x^2}\,dx = \int\limits_1^4 x^{1/2-2}\,dx = \int\limits_1^4 x^{-3/2}\,dx\,\textrm{.}</math>}} | ||
| - | <math> | + | We can now use the fact that a primitive function for <math>x^{n}</math> is <math>x^{n+1}/(n+1)</math> and calculate the integral's value, | 
| - | + | {{Displayed math||<math>\begin{align} | |
| - | + | \int\limits_1^4 x^{-3/2}\,dx | |
| - | + | &= \Bigl[\ \frac{x^{-3/2+1}}{-3/2+1}\ \Bigr]_1^4\\[5pt]  | |
| - | + | &= \Bigl[\ \frac{x^{-1/2}}{-1/2}\ \Bigr]_1^4\\[5pt] | |
| - | + | &= \Bigl[\ -2\frac{1}{x^{1/2}}\ \Bigr]_1^4\\[5pt]  | |
| - | + | &= \Bigl[\ -\frac{2}{\sqrt{x}}\ \Bigr]_1^4\\[5pt] | |
| - | + | &= -\frac{2}{\sqrt{4}} - \Bigl(-\frac{2}{\sqrt{1}}\Bigr)\\[5pt]  | |
| - | + | &= -\frac{2}{2}+2\\[5pt] | |
| - | <math>\begin{align} | + | &= 1\,\textrm{.}  | 
| - | + | \end{align}</math>}} | |
| - | & =\ | + | |
| - | & =\ | + | |
| - | & =-\frac{2}{2}+2=1 \\  | + | |
| - | \end{align}</math> | + | |
Version vom 13:09, 21. Okt. 2008
If we rewrite \displaystyle \sqrt{x} as \displaystyle x^{1/2}, the integrand can then be simplified using the power laws,
| \displaystyle \int\limits_1^4 \frac{\sqrt{x}}{x^2}\,dx = \int\limits_1^4 \frac{x^{1/2}}{x^2}\,dx = \int\limits_1^4 x^{1/2-2}\,dx = \int\limits_1^4 x^{-3/2}\,dx\,\textrm{.} | 
We can now use the fact that a primitive function for \displaystyle x^{n} is \displaystyle x^{n+1}/(n+1) and calculate the integral's value,
| \displaystyle \begin{align} \int\limits_1^4 x^{-3/2}\,dx &= \Bigl[\ \frac{x^{-3/2+1}}{-3/2+1}\ \Bigr]_1^4\\[5pt] &= \Bigl[\ \frac{x^{-1/2}}{-1/2}\ \Bigr]_1^4\\[5pt] &= \Bigl[\ -2\frac{1}{x^{1/2}}\ \Bigr]_1^4\\[5pt] &= \Bigl[\ -\frac{2}{\sqrt{x}}\ \Bigr]_1^4\\[5pt] &= -\frac{2}{\sqrt{4}} - \Bigl(-\frac{2}{\sqrt{1}}\Bigr)\\[5pt] &= -\frac{2}{2}+2\\[5pt] &= 1\,\textrm{.} \end{align} | 
 
		  