Lösung 2.2:4c

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 2.2:4c moved to Solution 2.2:4c: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
The trick is to complete the square in the denominator so that we obtain the same expression as in exercise b,
-
<center> [[Image:2_2_4c-1(2).gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
 
-
{{NAVCONTENT_START}}
+
<math>\int{\frac{\,dx}{x^{2}+4x+8}}=\int{\frac{\,dx}{\left( x+2 \right)^{2}-2^{2}+8}}=\int{\frac{\,dx}{\left( x+2 \right)^{2}+4}}</math>
-
<center> [[Image:2_2_4c-2(2).gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
 
 +
We take out a factor
 +
<math>\text{4}</math>
 +
from the denominator
 +
 
 +
 
 +
<math>\int{\frac{\,dx}{\left( x+2 \right)^{2}+4}}=\int{\frac{\,dx}{4\left( \frac{1}{4}\left( x+2 \right)^{2}+1 \right)}}=\frac{1}{4}\int{\frac{\,dx}{\frac{1}{4}\left( x+2 \right)^{2}+1}}</math>
 +
 
 +
 
 +
and rewrite the quadratic term as
 +
 
 +
 
 +
<math>\frac{1}{4}\int{\frac{\,dx}{\frac{1}{4}\left( x+2 \right)^{2}+1}}=\frac{1}{4}\int{\frac{\,dx}{\left( \frac{x+2}{2} \right)^{2}+1}}</math>
 +
 
 +
 
 +
If we now substitute
 +
<math>u=\frac{x+2}{2}</math>, we obtain the integral in the exercise
 +
 
 +
 
 +
<math>\begin{align}
 +
& \frac{1}{4}\int{\frac{\,dx}{\left( \frac{x+2}{2} \right)^{2}+1}}=\left\{ \begin{matrix}
 +
u=\frac{x+2}{2} \\
 +
du=\frac{\,dx}{2} \\
 +
\end{matrix} \right\} \\
 +
& =\frac{1}{4}\int{\frac{\,2dx}{u^{2}+1}}=\frac{1}{2}\int{\frac{\,dx}{u^{2}+1}} \\
 +
& =\frac{1}{2}\arctan u+C \\
 +
& =\frac{1}{2}\arctan \frac{x+2}{2}+C \\
 +
\end{align}</math>

Version vom 12:51, 21. Okt. 2008

The trick is to complete the square in the denominator so that we obtain the same expression as in exercise b,


\displaystyle \int{\frac{\,dx}{x^{2}+4x+8}}=\int{\frac{\,dx}{\left( x+2 \right)^{2}-2^{2}+8}}=\int{\frac{\,dx}{\left( x+2 \right)^{2}+4}}


We take out a factor \displaystyle \text{4} from the denominator


\displaystyle \int{\frac{\,dx}{\left( x+2 \right)^{2}+4}}=\int{\frac{\,dx}{4\left( \frac{1}{4}\left( x+2 \right)^{2}+1 \right)}}=\frac{1}{4}\int{\frac{\,dx}{\frac{1}{4}\left( x+2 \right)^{2}+1}}


and rewrite the quadratic term as


\displaystyle \frac{1}{4}\int{\frac{\,dx}{\frac{1}{4}\left( x+2 \right)^{2}+1}}=\frac{1}{4}\int{\frac{\,dx}{\left( \frac{x+2}{2} \right)^{2}+1}}


If we now substitute \displaystyle u=\frac{x+2}{2}, we obtain the integral in the exercise


\displaystyle \begin{align} & \frac{1}{4}\int{\frac{\,dx}{\left( \frac{x+2}{2} \right)^{2}+1}}=\left\{ \begin{matrix} u=\frac{x+2}{2} \\ du=\frac{\,dx}{2} \\ \end{matrix} \right\} \\ & =\frac{1}{4}\int{\frac{\,2dx}{u^{2}+1}}=\frac{1}{2}\int{\frac{\,dx}{u^{2}+1}} \\ & =\frac{1}{2}\arctan u+C \\ & =\frac{1}{2}\arctan \frac{x+2}{2}+C \\ \end{align}