Lösung 2.1:2b
Aus Online Mathematik Brückenkurs 2
K |
|||
Zeile 1: | Zeile 1: | ||
There is no ready made standard formula for a primitive function to our integrand, but if we expand | There is no ready made standard formula for a primitive function to our integrand, but if we expand | ||
- | + | {{Displayed math||<math>\begin{align} | |
- | <math>\begin{align} | + | \int\limits_{-1}^{2} (x-2)(x+1)\,dx |
- | + | &= \int\limits_{-1}^{2} (x^2+x-2x-2)\,dx\\[5pt] | |
- | & \int\limits_{-1}^{2} | + | &= \int\limits_{-1}^{2} (x^2-x-2)\,dx |
- | \end{align}</math> | + | \end{align}</math>}} |
and write the last integral as | and write the last integral as | ||
- | + | {{Displayed math||<math>\int\limits_{-1}^{2} (x^2-x^1-2x^0)\,dx</math>}} | |
- | <math>\int\limits_{-1}^{2} | + | |
- | we see that the integrand consists of three terms of the type | + | we see that the integrand consists of three terms of the type <math>x^n</math> and we can directly write down a primitive function, |
- | <math>x^ | + | |
- | and we can directly write down a primitive function | + | |
- | + | ||
- | <math>\begin{align} | + | {{Displayed math||<math>\begin{align} |
- | + | \int\limits_{-1}^{2} (x^2-x^1-2x^0)\,dx | |
- | & =\frac{2^ | + | &= \Bigl[\ \frac{x^3}{3} - \frac{x^2}{2} - 2\cdot\frac{x}{1}\ \Bigr]_{-1}^{2}\\[5pt] |
- | & =\frac{8}{3}-\frac{4}{2}-4-\ | + | &= \frac{2^3}{3} - \frac{2^2}{2} - 2\cdot\frac{2}{1} - \Bigl(\frac{(-1)^3}{3} - \frac{(-1)^2}{2} - 2\cdot\frac{(-1)}{1}\Bigr)\\[5pt] |
- | & =\frac{16-12-24+2+3-12}{6}=-\frac{27}{6}=-\frac{9}{2} \\ | + | &= \frac{8}{3} - \frac{4}{2} - 4 - \Bigl(-\frac{1}{3}-\frac{1}{2}+2\Bigr)\\[5pt] |
- | \end{align}</math> | + | &= \frac{16-12-24+2+3-12}{6}\\[5pt] |
+ | &= -\frac{27}{6}\\[5pt] | ||
+ | &= -\frac{9}{2}\,\textrm{.} | ||
+ | \end{align}</math>}} |
Version vom 12:45, 21. Okt. 2008
There is no ready made standard formula for a primitive function to our integrand, but if we expand
\displaystyle \begin{align}
\int\limits_{-1}^{2} (x-2)(x+1)\,dx &= \int\limits_{-1}^{2} (x^2+x-2x-2)\,dx\\[5pt] &= \int\limits_{-1}^{2} (x^2-x-2)\,dx \end{align} |
and write the last integral as
\displaystyle \int\limits_{-1}^{2} (x^2-x^1-2x^0)\,dx |
we see that the integrand consists of three terms of the type \displaystyle x^n and we can directly write down a primitive function,
\displaystyle \begin{align}
\int\limits_{-1}^{2} (x^2-x^1-2x^0)\,dx &= \Bigl[\ \frac{x^3}{3} - \frac{x^2}{2} - 2\cdot\frac{x}{1}\ \Bigr]_{-1}^{2}\\[5pt] &= \frac{2^3}{3} - \frac{2^2}{2} - 2\cdot\frac{2}{1} - \Bigl(\frac{(-1)^3}{3} - \frac{(-1)^2}{2} - 2\cdot\frac{(-1)}{1}\Bigr)\\[5pt] &= \frac{8}{3} - \frac{4}{2} - 4 - \Bigl(-\frac{1}{3}-\frac{1}{2}+2\Bigr)\\[5pt] &= \frac{16-12-24+2+3-12}{6}\\[5pt] &= -\frac{27}{6}\\[5pt] &= -\frac{9}{2}\,\textrm{.} \end{align} |