Lösung 2.2:4b

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 2.2:4b moved to Solution 2.2:4b: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
We could substitute
-
<center> [[Image:2_2_4b-1(2).gif]] </center>
+
<math>u=x-\text{1}</math>, but we would then still have the problem of the second term,
-
{{NAVCONTENT_STOP}}
+
<math>\text{3}</math>
-
{{NAVCONTENT_START}}
+
in the denominator. Instead, we take out a factor
-
<center> [[Image:2_2_4b-2(2).gif]] </center>
+
<math>\text{3}</math>
-
{{NAVCONTENT_STOP}}
+
from the denominator,
 +
 
 +
 
 +
<math>\begin{align}
 +
& \int{\frac{\,dx}{\left( x-1 \right)^{2}+3}}=\int{\frac{\,dx}{3\left( \frac{1}{3}\left( x-1 \right)^{2}+1 \right)}} \\
 +
& =\frac{1}{3}\int{\frac{\,dx}{\frac{1}{3}\left( x-1 \right)^{2}+1}} \\
 +
\end{align}</math>
 +
 
 +
and move a factor
 +
<math>\frac{1}{3}</math>
 +
into the square
 +
<math>\left( x-1 \right)^{2}</math>,
 +
 
 +
 
 +
<math>\frac{1}{3}\int{\frac{\,dx}{\frac{1}{3}\left( x-1 \right)^{2}+1}}=\frac{1}{3}\int{\frac{\,dx}{\left( \frac{x-1}{\sqrt{3}} \right)^{2}+1}}</math>
 +
 
 +
Now, we substitute
 +
<math>u=\frac{x-1}{\sqrt{3}}</math>
 +
and get rid of all the problems at once:
 +
 
 +
 
 +
<math>\begin{align}
 +
& \frac{1}{3}\int{\frac{\,dx}{\left( \frac{x-1}{\sqrt{3}} \right)^{2}+1}}=\left\{ \begin{matrix}
 +
u=\frac{x-1}{\sqrt{3}} \\
 +
du=\frac{\,dx}{\sqrt{3}} \\
 +
\end{matrix} \right\} \\
 +
& =\frac{1}{3}\int{\frac{\sqrt{3}\,du}{u^{2}+1}}=\frac{\sqrt{3}}{3}\int{\frac{\,du}{u^{2}+1}} \\
 +
& =\frac{1}{\sqrt{3}}\arctan u+C \\
 +
& =\frac{1}{\sqrt{3}}\arctan \frac{x-1}{\sqrt{3}}+C \\
 +
\end{align}</math>

Version vom 12:38, 21. Okt. 2008

We could substitute \displaystyle u=x-\text{1}, but we would then still have the problem of the second term, \displaystyle \text{3} in the denominator. Instead, we take out a factor \displaystyle \text{3} from the denominator,


\displaystyle \begin{align} & \int{\frac{\,dx}{\left( x-1 \right)^{2}+3}}=\int{\frac{\,dx}{3\left( \frac{1}{3}\left( x-1 \right)^{2}+1 \right)}} \\ & =\frac{1}{3}\int{\frac{\,dx}{\frac{1}{3}\left( x-1 \right)^{2}+1}} \\ \end{align}

and move a factor \displaystyle \frac{1}{3} into the square \displaystyle \left( x-1 \right)^{2},


\displaystyle \frac{1}{3}\int{\frac{\,dx}{\frac{1}{3}\left( x-1 \right)^{2}+1}}=\frac{1}{3}\int{\frac{\,dx}{\left( \frac{x-1}{\sqrt{3}} \right)^{2}+1}}

Now, we substitute \displaystyle u=\frac{x-1}{\sqrt{3}} and get rid of all the problems at once:


\displaystyle \begin{align} & \frac{1}{3}\int{\frac{\,dx}{\left( \frac{x-1}{\sqrt{3}} \right)^{2}+1}}=\left\{ \begin{matrix} u=\frac{x-1}{\sqrt{3}} \\ du=\frac{\,dx}{\sqrt{3}} \\ \end{matrix} \right\} \\ & =\frac{1}{3}\int{\frac{\sqrt{3}\,du}{u^{2}+1}}=\frac{\sqrt{3}}{3}\int{\frac{\,du}{u^{2}+1}} \\ & =\frac{1}{\sqrt{3}}\arctan u+C \\ & =\frac{1}{\sqrt{3}}\arctan \frac{x-1}{\sqrt{3}}+C \\ \end{align}