Lösung 2.2:3c

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 2.2:3c moved to Solution 2.2:3c: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
It is simpler to investigate the integral if we write it as
-
<center> [[Image:2_2_3c.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
 
 +
<math>\int{\ln x\centerdot \frac{1}{x}\,dx}</math>,
 +
 
 +
The derivative of
 +
<math>\ln x</math>
 +
is
 +
<math>\frac{1}{x}</math>, so if we choose
 +
<math>u=\ln x</math>, the integral can be expressed as
 +
 
 +
 
 +
<math>\int{u\centerdot {u}'\,dx}</math>
 +
 
 +
 
 +
Thus, it seems that
 +
<math>u=\ln x</math>
 +
is a useful substitution,
 +
 
 +
 
 +
<math>\begin{align}
 +
& \int{\ln x\centerdot \frac{1}{x}\,dx}=\left\{ \begin{matrix}
 +
u=\ln x \\
 +
du=\left( \ln x \right)^{\prime }\,dx=\frac{1}{x}\,dx \\
 +
\end{matrix} \right\} \\
 +
& =\int{u\,du=\frac{1}{2}u^{2}+C} \\
 +
& =\frac{1}{2}\left( \ln x \right)^{2}+C \\
 +
\end{align}</math>

Version vom 11:02, 21. Okt. 2008

It is simpler to investigate the integral if we write it as


\displaystyle \int{\ln x\centerdot \frac{1}{x}\,dx},

The derivative of \displaystyle \ln x is \displaystyle \frac{1}{x}, so if we choose \displaystyle u=\ln x, the integral can be expressed as


\displaystyle \int{u\centerdot {u}'\,dx}


Thus, it seems that \displaystyle u=\ln x is a useful substitution,


\displaystyle \begin{align} & \int{\ln x\centerdot \frac{1}{x}\,dx}=\left\{ \begin{matrix} u=\ln x \\ du=\left( \ln x \right)^{\prime }\,dx=\frac{1}{x}\,dx \\ \end{matrix} \right\} \\ & =\int{u\,du=\frac{1}{2}u^{2}+C} \\ & =\frac{1}{2}\left( \ln x \right)^{2}+C \\ \end{align}