Lösung 1.3:5
Aus Online Mathematik Brückenkurs 2
K |
|||
Zeile 9: | Zeile 9: | ||
The area of the cross-section is | The area of the cross-section is | ||
+ | {{Displayed math||<math>\begin{align} | ||
+ | A(\alpha) &= 10\cdot 10\cos\alpha + 2\cdot\frac{1}{2}\cdot 10\cos\alpha \cdot 10\sin\alpha\\[5pt] | ||
+ | &= 100\cos \alpha (1+\sin\alpha)\,\textrm{.} | ||
+ | \end{align}</math>}} | ||
- | <math>\ | + | If we limit the angle to lie between <math>0</math> and <math>\pi/2</math>, the problem can be formulated as: |
- | + | ||
- | + | ||
- | + | ||
+ | ::Maximise the function <math>A(\alpha) = 100\cos\alpha (1+\sin\alpha)</math> when | ||
+ | <math>0\le \alpha \le {\pi }/{2}\,</math>. | ||
- | + | The area function is a differentiable function and the area is least when <math>\alpha=0</math> or <math>\alpha=\pi/2\,</math>, so the area must assume its maximum at a critical point of the area function. | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | The area function is a differentiable function and the area is least when | + | |
- | <math>\alpha =0</math> | + | |
- | or | + | |
- | <math>\alpha = | + | |
We differentiate the area function: | We differentiate the area function: | ||
+ | {{Displayed math||<math>\begin{align} | ||
+ | A'(\alpha) &= 100\cdot (-\sin\alpha)\cdot (1+\sin\alpha) + 100\cdot\cos\alpha \cdot \cos\alpha\\[5pt] | ||
+ | &= -100\sin\alpha - 100\sin^2\!\alpha + 100\cos^2\!\alpha\,\textrm{.} | ||
+ | \end{align}</math>}} | ||
- | + | At a critical point <math>A'(\alpha)=0</math> and this gives us the equation | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | At a critical point | + | |
- | <math> | + | |
- | and this gives us the equation | + | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | {{Displayed math||<math>\sin\alpha + \sin^2\!\alpha - \cos^2\!\alpha = 0</math>}} | |
- | <math>\ | + | after eliminating the factor -100. We replace <math>\cos^2\!\alpha</math> with <math>1-\sin^2\!\alpha</math> (according to the Pythagorean identity) to obtain an equation solely in <math>\sin\alpha\,</math>, |
- | + | ||
- | + | ||
- | \ | + | |
- | + | {{Displayed math||<math>\begin{align} | |
- | <math>\sin \alpha | + | \sin\alpha + \sin^2\!\alpha - (1-\sin^2\!\alpha) &= 0\\[5pt] |
- | + | 2\sin^2\!\alpha + \sin\alpha - 1 &= 0\,\textrm{.} | |
- | + | \end{align}</math>}} | |
- | + | ||
- | + | ||
- | + | This is a second-degree equation in <math>\sin\alpha</math> and completing the square gives that | |
- | <math>\sin \alpha | + | |
- | + | ||
- | + | ||
- | and | + | |
- | + | ||
- | gives | + | |
- | + | ||
- | + | ||
- | + | {{Displayed math||<math>\begin{align} | |
+ | 2\bigl(\sin\alpha + \tfrac{1}{4}\bigr)^{2} - 2\bigl(\tfrac{1}{4}\bigr)^2 - 1 &= 0\\[5pt] | ||
+ | \bigl(\sin\alpha + \tfrac{1}{4}\bigr)^2 &= \frac{9}{16} | ||
+ | \end{align}</math>}} | ||
- | + | and we obtain <math>\sin\alpha = -\tfrac{1}{4}\pm \tfrac{3}{4}</math>, i.e. <math>\sin \alpha = -1</math> or <math>\sin \alpha = \tfrac{1}{2}\,</math>. | |
- | <math>\alpha = | + | |
- | + | ||
- | <math>\alpha = | + | |
- | + | ||
- | <math>\alpha = | + | |
- | + | ||
+ | The case <math>\sin \alpha =-1</math> is not satisfied for <math>0\le \alpha \le \pi/2</math> and <math>\sin \alpha = \tfrac{1}{2}</math> gives <math>\alpha = \pi/6</math>. Thus <math>\alpha = \pi/6\,</math> is a critical point. | ||
- | <math>\begin{align} | ||
- | & {A}''\left( \alpha \right)=-100\cos \alpha -100\centerdot 2\sin \alpha \centerdot \cos \alpha +100\centerdot 2\cos \alpha \centerdot \left( -\sin \alpha \right) \\ | ||
- | & =-100\cos \alpha \left( 1+4\sin \alpha \right) \\ | ||
- | \end{align}</math> | ||
+ | If we summarize, we know therefore that the cross-sectional area has local minimum points at <math>\alpha = 0</math> and <math>\alpha = \pi/2</math> and that we have a critical point at <math>\alpha = \pi/6\,</math>. This critical point must be a maximum, which we can also show using the second derivative, | ||
- | + | {{Displayed math||<math>\begin{align} | |
- | <math>\alpha = | + | A''(\alpha) &= -100\cos\alpha - 100\cdot 2\sin\alpha\cdot\cos\alpha + 100\cdot 2\cos\alpha \cdot (-\sin\alpha)\\[5pt] |
+ | &= -100\cos\alpha (1+4\sin\alpha)\,, | ||
+ | \end{align}</math>}} | ||
+ | which is negative at <math>\alpha = \pi/6</math>, | ||
- | <math>\begin{align} | + | {{Displayed math||<math>\begin{align} |
- | + | A''(\pi/6) &= -100\cos\frac{\pi}{6}\cdot \Bigl(1+4\sin\frac{\pi}{6}\Bigr)\\[5pt] | |
- | & =-100\ | + | &= -100\cdot\frac{\sqrt{3}}{2}\cdot \Bigl( 1+4\cdot \frac{1}{2} \Bigr)<0\,\textrm{.} |
- | \end{align}</math> | + | \end{align}</math>}} |
- | There are no local maximum points other than | + | There are no local maximum points other than <math>\alpha = \pi/6\,</math>, which must therefore also be a global maximum. |
- | <math>\alpha = | + |
Version vom 10:30, 21. Okt. 2008
The channel holds most water when its cross-sectional area is greatest.
By dividing up the channel's cross-section into a rectangle and two triangles we can, with the help of a little trigonometry, determine the lengths of the rectangle's and triangles' sides, and thence the cross-sectional area.
The area of the cross-section is
\displaystyle \begin{align}
A(\alpha) &= 10\cdot 10\cos\alpha + 2\cdot\frac{1}{2}\cdot 10\cos\alpha \cdot 10\sin\alpha\\[5pt] &= 100\cos \alpha (1+\sin\alpha)\,\textrm{.} \end{align} |
If we limit the angle to lie between \displaystyle 0 and \displaystyle \pi/2, the problem can be formulated as:
- Maximise the function \displaystyle A(\alpha) = 100\cos\alpha (1+\sin\alpha) when
\displaystyle 0\le \alpha \le {\pi }/{2}\,.
The area function is a differentiable function and the area is least when \displaystyle \alpha=0 or \displaystyle \alpha=\pi/2\,, so the area must assume its maximum at a critical point of the area function.
We differentiate the area function:
\displaystyle \begin{align}
A'(\alpha) &= 100\cdot (-\sin\alpha)\cdot (1+\sin\alpha) + 100\cdot\cos\alpha \cdot \cos\alpha\\[5pt] &= -100\sin\alpha - 100\sin^2\!\alpha + 100\cos^2\!\alpha\,\textrm{.} \end{align} |
At a critical point \displaystyle A'(\alpha)=0 and this gives us the equation
\displaystyle \sin\alpha + \sin^2\!\alpha - \cos^2\!\alpha = 0 |
after eliminating the factor -100. We replace \displaystyle \cos^2\!\alpha with \displaystyle 1-\sin^2\!\alpha (according to the Pythagorean identity) to obtain an equation solely in \displaystyle \sin\alpha\,,
\displaystyle \begin{align}
\sin\alpha + \sin^2\!\alpha - (1-\sin^2\!\alpha) &= 0\\[5pt] 2\sin^2\!\alpha + \sin\alpha - 1 &= 0\,\textrm{.} \end{align} |
This is a second-degree equation in \displaystyle \sin\alpha and completing the square gives that
\displaystyle \begin{align}
2\bigl(\sin\alpha + \tfrac{1}{4}\bigr)^{2} - 2\bigl(\tfrac{1}{4}\bigr)^2 - 1 &= 0\\[5pt] \bigl(\sin\alpha + \tfrac{1}{4}\bigr)^2 &= \frac{9}{16} \end{align} |
and we obtain \displaystyle \sin\alpha = -\tfrac{1}{4}\pm \tfrac{3}{4}, i.e. \displaystyle \sin \alpha = -1 or \displaystyle \sin \alpha = \tfrac{1}{2}\,.
The case \displaystyle \sin \alpha =-1 is not satisfied for \displaystyle 0\le \alpha \le \pi/2 and \displaystyle \sin \alpha = \tfrac{1}{2} gives \displaystyle \alpha = \pi/6. Thus \displaystyle \alpha = \pi/6\, is a critical point.
If we summarize, we know therefore that the cross-sectional area has local minimum points at \displaystyle \alpha = 0 and \displaystyle \alpha = \pi/2 and that we have a critical point at \displaystyle \alpha = \pi/6\,. This critical point must be a maximum, which we can also show using the second derivative,
\displaystyle \begin{align}
A''(\alpha) &= -100\cos\alpha - 100\cdot 2\sin\alpha\cdot\cos\alpha + 100\cdot 2\cos\alpha \cdot (-\sin\alpha)\\[5pt] &= -100\cos\alpha (1+4\sin\alpha)\,, \end{align} |
which is negative at \displaystyle \alpha = \pi/6,
\displaystyle \begin{align}
A''(\pi/6) &= -100\cos\frac{\pi}{6}\cdot \Bigl(1+4\sin\frac{\pi}{6}\Bigr)\\[5pt] &= -100\cdot\frac{\sqrt{3}}{2}\cdot \Bigl( 1+4\cdot \frac{1}{2} \Bigr)<0\,\textrm{.} \end{align} |
There are no local maximum points other than \displaystyle \alpha = \pi/6\,, which must therefore also be a global maximum.