Lösung 2.1:3c
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K (Lösning 2.1:3c moved to Solution 2.1:3c: Robot: moved page) |
|||
| Zeile 1: | Zeile 1: | ||
| - | {{ | + | If we multiply the factors in the integrand together and use the power laws, |
| - | < | + | |
| - | {{ | + | |
| + | <math>\begin{align} | ||
| + | & \int{e^{2x}}\left( e^{x}+1 \right)\,dx=\int{\left( e^{2x}e^{x}+e^{2x} \right)}\,dx \\ | ||
| + | & =\int{\left( e^{2x+x}+e^{2x} \right)}\,dx=\int{\left( e^{3x}+e^{2x} \right)}\,dx \\ | ||
| + | \end{align}</math> | ||
| + | |||
| + | we obtain a standard integral with two terms of the type | ||
| + | <math>e^{ax}</math>, where | ||
| + | <math>a</math> | ||
| + | is a constant. The indefinite integral is therefore | ||
| + | |||
| + | |||
| + | <math>\int{\left( e^{3x}+e^{2x} \right)}\,dx=\frac{e^{3x}}{3}+\frac{e^{2x}}{2}+C</math> | ||
| + | |||
| + | where | ||
| + | <math>C</math> | ||
| + | is an arbitrary constant. | ||
Version vom 13:48, 17. Okt. 2008
If we multiply the factors in the integrand together and use the power laws,
\displaystyle \begin{align}
& \int{e^{2x}}\left( e^{x}+1 \right)\,dx=\int{\left( e^{2x}e^{x}+e^{2x} \right)}\,dx \\
& =\int{\left( e^{2x+x}+e^{2x} \right)}\,dx=\int{\left( e^{3x}+e^{2x} \right)}\,dx \\
\end{align}
we obtain a standard integral with two terms of the type \displaystyle e^{ax}, where \displaystyle a is a constant. The indefinite integral is therefore
\displaystyle \int{\left( e^{3x}+e^{2x} \right)}\,dx=\frac{e^{3x}}{3}+\frac{e^{2x}}{2}+C
where \displaystyle C is an arbitrary constant.
