Lösung 2.1:2d
Aus Online Mathematik Brückenkurs 2
K (Lösning 2.1:2d moved to Solution 2.1:2d: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | If we rewrite |
- | < | + | <math>\sqrt{x}</math> |
- | {{ | + | as |
+ | <math>x^{{1}/{2}\;}</math>, the integrand can then be simplified using the power laws: | ||
+ | |||
+ | |||
+ | <math>\int\limits_{1}^{4}{\frac{\sqrt{x}}{x^{2}}}\,dx=\int\limits_{1}^{4}{\frac{x^{\frac{1}{2}}}{x^{2}}}\,dx=\int\limits_{1}^{4}{x^{\frac{1}{2}-2}}\,dx=\int\limits_{1}^{4}{x^{-\frac{3}{2}}}\,dx</math> | ||
+ | |||
+ | |||
+ | We can now use the fact that a primitive function for | ||
+ | <math>x^{n}</math> | ||
+ | is | ||
+ | <math>\frac{x^{n+1}}{n+1}</math> | ||
+ | and calculate the integral's value: | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \int\limits_{1}^{4}{x^{-\frac{3}{2}}}\,dx=\left[ \frac{x^{-\frac{3}{2}+1}}{^{-\frac{3}{2}+1}} \right]_{1}^{4} \\ | ||
+ | & =\left[ \frac{x^{-\frac{1}{2}}}{^{-\frac{1}{2}}} \right]_{1}^{4}=\left[ -2\frac{1}{x^{{1}/{2}\;}} \right]_{1}^{4} \\ | ||
+ | & =\left[ -\frac{2}{\sqrt{x}} \right]_{1}^{4}=-\frac{2}{\sqrt{4}}-\left( -\frac{2}{\sqrt{1}} \right) \\ | ||
+ | & =-\frac{2}{2}+2=1 \\ | ||
+ | \end{align}</math> |
Version vom 13:27, 17. Okt. 2008
If we rewrite \displaystyle \sqrt{x} as \displaystyle x^{{1}/{2}\;}, the integrand can then be simplified using the power laws:
\displaystyle \int\limits_{1}^{4}{\frac{\sqrt{x}}{x^{2}}}\,dx=\int\limits_{1}^{4}{\frac{x^{\frac{1}{2}}}{x^{2}}}\,dx=\int\limits_{1}^{4}{x^{\frac{1}{2}-2}}\,dx=\int\limits_{1}^{4}{x^{-\frac{3}{2}}}\,dx
We can now use the fact that a primitive function for
\displaystyle x^{n}
is
\displaystyle \frac{x^{n+1}}{n+1}
and calculate the integral's value:
\displaystyle \begin{align}
& \int\limits_{1}^{4}{x^{-\frac{3}{2}}}\,dx=\left[ \frac{x^{-\frac{3}{2}+1}}{^{-\frac{3}{2}+1}} \right]_{1}^{4} \\
& =\left[ \frac{x^{-\frac{1}{2}}}{^{-\frac{1}{2}}} \right]_{1}^{4}=\left[ -2\frac{1}{x^{{1}/{2}\;}} \right]_{1}^{4} \\
& =\left[ -\frac{2}{\sqrt{x}} \right]_{1}^{4}=-\frac{2}{\sqrt{4}}-\left( -\frac{2}{\sqrt{1}} \right) \\
& =-\frac{2}{2}+2=1 \\
\end{align}