Lösung 2.1:2c
Aus Online Mathematik Brückenkurs 2
K (Lösning 2.1:2c moved to Solution 2.1:2c: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | If we recall that |
- | < | + | <math>\sqrt{x}=x^{{1}/{2}\;}</math>, the integral can be written as |
- | {{ | + | |
+ | |||
+ | <math>\begin{align} | ||
+ | & \int\limits_{4}^{9}{\left( \sqrt{x}-\frac{1}{\sqrt{x}} \right)}\,dx=\int\limits_{4}^{9}{\left( x^{{1}/{2}\;}-\frac{1}{x^{{1}/{2}\;}} \right)}\,dx \\ | ||
+ | & =\int\limits_{4}^{9}{\left( x^{{1}/{2}\;}-x^{{-1}/{2}\;} \right)}\,dx \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | This is a standard integral in which the integrand consists of two terms looking like | ||
+ | <math>x^{n}</math>, where | ||
+ | <math>n=\frac{1}{2}</math> | ||
+ | and | ||
+ | <math>n=-\frac{1}{2}</math>. | ||
+ | |||
+ | We obtain | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \int\limits_{4}^{9}{\left( x^{{1}/{2}\;}-x^{{-1}/{2}\;} \right)}\,dx=\left[ \frac{x^{\frac{1}{2}+1}}{\frac{1}{2}+1}-\frac{x^{-\frac{1}{2}+1}}{-\frac{1}{2}+1} \right]_{4}^{9} \\ | ||
+ | & =\left[ \frac{x^{1+\frac{1}{2}}}{\frac{3}{2}}-\frac{x^{\frac{1}{2}}}{\frac{1}{2}} \right]_{4}^{9} \\ | ||
+ | & =\left[ \frac{2}{3}x\sqrt{x}-2\sqrt{x} \right]_{4}^{9} \\ | ||
+ | & =\frac{2}{3}\centerdot 9\centerdot \sqrt{9}-2\sqrt{9}-\left( \frac{2}{3}\centerdot 4\centerdot \sqrt{4}-2\sqrt{4} \right) \\ | ||
+ | & =\frac{2}{3}93-2\centerdot 3-\left( \frac{2}{3}\centerdot 4\centerdot 2-2\centerdot 2 \right) \\ | ||
+ | & =18-6-\frac{16}{3}+4=16-\frac{16}{3} \\ | ||
+ | & =\frac{16\centerdot 3-16}{3}=\frac{32}{3} \\ | ||
+ | \end{align}</math> |
Version vom 13:14, 17. Okt. 2008
If we recall that \displaystyle \sqrt{x}=x^{{1}/{2}\;}, the integral can be written as
\displaystyle \begin{align}
& \int\limits_{4}^{9}{\left( \sqrt{x}-\frac{1}{\sqrt{x}} \right)}\,dx=\int\limits_{4}^{9}{\left( x^{{1}/{2}\;}-\frac{1}{x^{{1}/{2}\;}} \right)}\,dx \\
& =\int\limits_{4}^{9}{\left( x^{{1}/{2}\;}-x^{{-1}/{2}\;} \right)}\,dx \\
\end{align}
This is a standard integral in which the integrand consists of two terms looking like
\displaystyle x^{n}, where
\displaystyle n=\frac{1}{2}
and
\displaystyle n=-\frac{1}{2}.
We obtain
\displaystyle \begin{align}
& \int\limits_{4}^{9}{\left( x^{{1}/{2}\;}-x^{{-1}/{2}\;} \right)}\,dx=\left[ \frac{x^{\frac{1}{2}+1}}{\frac{1}{2}+1}-\frac{x^{-\frac{1}{2}+1}}{-\frac{1}{2}+1} \right]_{4}^{9} \\
& =\left[ \frac{x^{1+\frac{1}{2}}}{\frac{3}{2}}-\frac{x^{\frac{1}{2}}}{\frac{1}{2}} \right]_{4}^{9} \\
& =\left[ \frac{2}{3}x\sqrt{x}-2\sqrt{x} \right]_{4}^{9} \\
& =\frac{2}{3}\centerdot 9\centerdot \sqrt{9}-2\sqrt{9}-\left( \frac{2}{3}\centerdot 4\centerdot \sqrt{4}-2\sqrt{4} \right) \\
& =\frac{2}{3}93-2\centerdot 3-\left( \frac{2}{3}\centerdot 4\centerdot 2-2\centerdot 2 \right) \\
& =18-6-\frac{16}{3}+4=16-\frac{16}{3} \\
& =\frac{16\centerdot 3-16}{3}=\frac{32}{3} \\
\end{align}