Lösung 2.1:1b
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K (Lösning 2.1:1b moved to Solution 2.1:1b: Robot: moved page) |
|||
| Zeile 1: | Zeile 1: | ||
| - | + | The graph of the function | |
| - | < | + | <math>y=2x+1</math> |
| - | + | is a straight line which cuts the | |
| - | { | + | <math>y</math> |
| - | < | + | -axis at |
| - | { | + | <math>y=\text{1}</math> |
| + | and has gradient | ||
| + | <math>2</math>. | ||
| + | |||
| + | The integral's value is the area under the straight line and between | ||
| + | <math>x=0\text{ }</math> | ||
| + | and | ||
| + | <math>x=\text{1}</math>. | ||
| + | |||
[[Image:2_1_1_b1.gif|center]] | [[Image:2_1_1_b1.gif|center]] | ||
| + | |||
| + | We can divide up the region under the graph into a square and rectangle, | ||
| + | |||
| + | |||
[[Image:2_1_1_b2.gif|center]] | [[Image:2_1_1_b2.gif|center]] | ||
| + | |||
| + | and then add up the area to obtain the total area. | ||
| + | |||
| + | The value of the integral is | ||
| + | |||
| + | |||
| + | <math>\int\limits_{0}^{1}{\left( 2x+1 \right)\,}dx=</math> | ||
| + | (area of the square) + (area of the triangle) | ||
| + | <math>1\centerdot 1+\frac{1}{2}\centerdot 1\centerdot 2=2</math> | ||
Version vom 11:37, 17. Okt. 2008
The graph of the function \displaystyle y=2x+1 is a straight line which cuts the \displaystyle y -axis at \displaystyle y=\text{1} and has gradient \displaystyle 2.
The integral's value is the area under the straight line and between \displaystyle x=0\text{ } and \displaystyle x=\text{1}.
We can divide up the region under the graph into a square and rectangle,
and then add up the area to obtain the total area.
The value of the integral is
\displaystyle \int\limits_{0}^{1}{\left( 2x+1 \right)\,}dx=
(area of the square) + (area of the triangle)
\displaystyle 1\centerdot 1+\frac{1}{2}\centerdot 1\centerdot 2=2


