Lösung 1.2:3c
Aus Online Mathematik Brückenkurs 2
K (Lösning 1.2:3c moved to Solution 1.2:3c: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | We can write the expression as |
- | < | + | |
- | {{ | + | |
- | {{ | + | <math>\frac{1}{x\sqrt{1-x^{2}}}=\left( x\sqrt{1-x^{2}} \right)^{-1}</math>, |
- | < | + | |
- | {{ | + | and then we see that we have "something raised to |
+ | <math>-\text{1}</math>", which can be differentiated one step by using the chain rule: | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \frac{d}{dx}\left( \left\{ \left. x\sqrt{1-x^{2}} \right\} \right. \right)^{-1}=-1\centerdot \left( \left\{ \left. x\sqrt{1-x^{2}} \right\} \right. \right)\centerdot \left( \left\{ \left. x\sqrt{1-x^{2}} \right\} \right. \right)^{\prime } \\ | ||
+ | & =-\frac{1}{\left( x\sqrt{1-x^{2}} \right)^{2}}\centerdot \left( x\sqrt{1-x^{2}} \right)^{\prime } \\ | ||
+ | & =-\frac{1}{x^{^{2}}\left( 1-x^{2} \right)}\centerdot \left( x\sqrt{1-x^{2}} \right)^{\prime } \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | The next step is to differentiate the product | ||
+ | <math>x\centerdot \sqrt{1-x^{2}}</math> | ||
+ | using the product rule: | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & =-\frac{1}{x^{^{2}}\left( 1-x^{2} \right)}\centerdot \left( \left( x \right)^{\prime }\sqrt{1-x^{2}}+x\left( \sqrt{1-x^{2}} \right)^{\prime } \right) \\ | ||
+ | & =-\frac{1}{x^{^{2}}\left( 1-x^{2} \right)}\centerdot \left( 1\sqrt{1-x^{2}}+x\left( \sqrt{1-x^{2}} \right)^{\prime } \right) \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | The expression | ||
+ | <math>\sqrt{1-x^{2}}</math> | ||
+ | is of the type "root of something", so we use the chain rule to differentiate, | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & =-\frac{1}{x^{^{2}}\left( 1-x^{2} \right)}\left( \sqrt{1-x^{2}}+x\centerdot \frac{1}{2\sqrt{1-x^{2}}}\left( 1-x^{2} \right)^{\prime } \right) \\ | ||
+ | & =-\frac{1}{x^{^{2}}\left( 1-x^{2} \right)}\left( \sqrt{1-x^{2}}+x\centerdot \frac{1}{2\sqrt{1-x^{2}}}\centerdot \left( -2x \right) \right) \\ | ||
+ | & =-\frac{1}{x^{^{2}}\left( 1-x^{2} \right)}\left( \sqrt{1-x^{2}}-\frac{x^{2}}{\sqrt{1-x^{2}}} \right) \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | We write the expression on the right over a common denominator: | ||
+ | |||
+ | <math>\begin{align} | ||
+ | & =-\frac{1}{x^{^{2}}\left( 1-x^{2} \right)}\centerdot \left( \frac{\left( \sqrt{1-x^{2}} \right)^{2}-x^{2}}{\sqrt{1-x^{2}}} \right) \\ | ||
+ | & =-\frac{1}{x^{^{2}}\left( 1-x^{2} \right)}\centerdot \left( \frac{1-x^{2}-x^{2}}{\sqrt{1-x^{2}}} \right) \\ | ||
+ | & =-\frac{1-2x^{2}}{x^{2}\left( 1-x^{2} \right)^{{3}/{2}\;}} \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | NOTE: When we make simplifications of the form | ||
+ | <math>\left( \sqrt{1-x^{2}} \right)^{2}=1-x^{2}</math>, we assume that both sides are well defined (i.e. in this case that | ||
+ | <math>x</math> | ||
+ | lies between | ||
+ | <math>-\text{1}</math> | ||
+ | and | ||
+ | <math>\text{1}</math> | ||
+ | ). |
Version vom 11:57, 15. Okt. 2008
We can write the expression as
\displaystyle \frac{1}{x\sqrt{1-x^{2}}}=\left( x\sqrt{1-x^{2}} \right)^{-1},
and then we see that we have "something raised to \displaystyle -\text{1}", which can be differentiated one step by using the chain rule:
\displaystyle \begin{align}
& \frac{d}{dx}\left( \left\{ \left. x\sqrt{1-x^{2}} \right\} \right. \right)^{-1}=-1\centerdot \left( \left\{ \left. x\sqrt{1-x^{2}} \right\} \right. \right)\centerdot \left( \left\{ \left. x\sqrt{1-x^{2}} \right\} \right. \right)^{\prime } \\
& =-\frac{1}{\left( x\sqrt{1-x^{2}} \right)^{2}}\centerdot \left( x\sqrt{1-x^{2}} \right)^{\prime } \\
& =-\frac{1}{x^{^{2}}\left( 1-x^{2} \right)}\centerdot \left( x\sqrt{1-x^{2}} \right)^{\prime } \\
\end{align}
The next step is to differentiate the product
\displaystyle x\centerdot \sqrt{1-x^{2}}
using the product rule:
\displaystyle \begin{align}
& =-\frac{1}{x^{^{2}}\left( 1-x^{2} \right)}\centerdot \left( \left( x \right)^{\prime }\sqrt{1-x^{2}}+x\left( \sqrt{1-x^{2}} \right)^{\prime } \right) \\
& =-\frac{1}{x^{^{2}}\left( 1-x^{2} \right)}\centerdot \left( 1\sqrt{1-x^{2}}+x\left( \sqrt{1-x^{2}} \right)^{\prime } \right) \\
\end{align}
The expression
\displaystyle \sqrt{1-x^{2}}
is of the type "root of something", so we use the chain rule to differentiate,
\displaystyle \begin{align}
& =-\frac{1}{x^{^{2}}\left( 1-x^{2} \right)}\left( \sqrt{1-x^{2}}+x\centerdot \frac{1}{2\sqrt{1-x^{2}}}\left( 1-x^{2} \right)^{\prime } \right) \\
& =-\frac{1}{x^{^{2}}\left( 1-x^{2} \right)}\left( \sqrt{1-x^{2}}+x\centerdot \frac{1}{2\sqrt{1-x^{2}}}\centerdot \left( -2x \right) \right) \\
& =-\frac{1}{x^{^{2}}\left( 1-x^{2} \right)}\left( \sqrt{1-x^{2}}-\frac{x^{2}}{\sqrt{1-x^{2}}} \right) \\
\end{align}
We write the expression on the right over a common denominator:
\displaystyle \begin{align} & =-\frac{1}{x^{^{2}}\left( 1-x^{2} \right)}\centerdot \left( \frac{\left( \sqrt{1-x^{2}} \right)^{2}-x^{2}}{\sqrt{1-x^{2}}} \right) \\ & =-\frac{1}{x^{^{2}}\left( 1-x^{2} \right)}\centerdot \left( \frac{1-x^{2}-x^{2}}{\sqrt{1-x^{2}}} \right) \\ & =-\frac{1-2x^{2}}{x^{2}\left( 1-x^{2} \right)^{{3}/{2}\;}} \\ \end{align}
NOTE: When we make simplifications of the form
\displaystyle \left( \sqrt{1-x^{2}} \right)^{2}=1-x^{2}, we assume that both sides are well defined (i.e. in this case that
\displaystyle x
lies between
\displaystyle -\text{1}
and
\displaystyle \text{1}
).