Lösung 1.2:3a

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
-
There is a "ln of something", so a first step in the differentiation is to take the derivative of the logarithm:
+
There is a "ln of something", so a first step in the differentiation is to take the derivative of the logarithm,
 +
{{Displayed math||<math>\frac{d}{dx}\,\ln\bigl( \bbox[#FFEEAA;,1.5pt]{\sqrt{x}+\sqrt{x+1}} \bigr) = {}\rlap{\frac{1}{\bbox[#FFEEAA;,1.5pt]{\sqrt{x}+\sqrt{x+1}}}\cdot \bigl( \bbox[#FFEEAA;,1.5pt]{\sqrt{x}+\sqrt{x+1}} \bigr)'\,\textrm{.}}\phantom{\frac{1}{\sqrt{x}+\sqrt{x+1}}\cdot \Bigl[\frac{1}{2\sqrt{x}}+\frac{1}{2\sqrt{x+1}}\cdot (x+1)'\Bigr]}</math>}}
-
<math>\frac{d}{dx}\ln \left( \left\{ \left. \sqrt{x}+\sqrt{x+1} \right\} \right. \right)=\frac{1}{\left\{ \left. \sqrt{x}+\sqrt{x+1} \right\} \right.}\centerdot \left( \left\{ \left. \sqrt{x}+\sqrt{x+1} \right\} \right. \right)^{\prime }</math>
+
We can carry out the differentiation of <math>\sqrt{x}+\sqrt{x+1}</math> on the right-hand side term by term to obtain
 +
{{Displayed math||<math>\phantom{\frac{d}{dx}\,\ln\bigl( \bbox[#FFEEAA;,1.5pt]{\sqrt{x}+\sqrt{x+1}} \bigr)}{} = {}\rlap{\frac{1}{\sqrt{x}+\sqrt{x+1}}\cdot \bigl[ (\sqrt{x})' + (\sqrt{x+1})'\bigr]}\phantom{\frac{1}{\sqrt{x}+\sqrt{x+1}}\cdot \Bigl[\frac{1}{2\sqrt{x}}+\frac{1}{2\sqrt{x+1}}\cdot (x+1)'\Bigr]}</math>}}
-
We can carry out the differentiation of
+
and it remains then only to differentiate <math>\sqrt{x}</math>, which we do directly, and <math>\sqrt{x+1}</math> (which has a simple inner derivative),
-
<math>\sqrt{x}+\sqrt{x+1}</math>
+
-
on the right-hand side term by term to obtain
+
-
 
+
-
 
+
-
<math>\quad =\frac{1}{\sqrt{x}+\sqrt{x+1}}\centerdot \left[ \left( \sqrt{x} \right)^{\prime }+\left( \sqrt{x+1} \right)^{\prime } \right]</math>
+
-
 
+
-
 
+
-
and it remains then only to differentiate
+
-
<math>\sqrt{x}</math>,which we do directly, and
+
-
<math>\sqrt{x+1}</math>
+
-
which a simple inner derivative)
+
-
 
+
-
 
+
-
<math></math>
+
-
 
+
-
<math>\begin{align}
+
-
& =\frac{1}{\sqrt{x}+\sqrt{x+1}}\centerdot \left[ \frac{1}{2\sqrt{x}}+\frac{1}{2\sqrt{x+1}}\centerdot \left( x+1 \right)^{\prime } \right] \\
+
-
& =\frac{1}{\sqrt{x}+\sqrt{x+1}}\centerdot \left[ \frac{1}{2\sqrt{x}}+\frac{1}{2\sqrt{x+1}}\centerdot 1 \right] \\
+
-
\end{align}</math>
+
-
 
+
 +
{{Displayed math||<math>\begin{align}
 +
\phantom{\frac{d}{dx}\,\ln\bigl( \bbox[#FFEEAA;,1.5pt]{\sqrt{x}+\sqrt{x+1}} \bigr)}{}
 +
&= \frac{1}{\sqrt{x}+\sqrt{x+1}}\cdot \Bigl[\frac{1}{2\sqrt{x}}+\frac{1}{2\sqrt{x+1}}\cdot (x+1)'\Bigr]\\[5pt]
 +
&= \frac{1}{\sqrt{x}+\sqrt{x+1}}\cdot \Bigl[\frac{1}{2\sqrt{x}}+\frac{1}{2\sqrt{x+1}}\cdot 1\Bigr]\,\textrm{.}
 +
\end{align}</math>}}
If we rewrite the expression inside the square brackets using a common denominator, we get
If we rewrite the expression inside the square brackets using a common denominator, we get
 +
{{Displayed math||<math>\phantom{\frac{d}{dx}\,\ln\bigl( \bbox[#FFEEAA;,1.5pt]{\sqrt{x}+\sqrt{x+1}} \bigr)}{}
 +
= {}\rlap{\frac{1}{\sqrt{x}+\sqrt{x+1}}\cdot \Bigl[\frac{\sqrt{x+1}+\sqrt{x}}{2\sqrt{x}\sqrt{x+1}} \Bigr]\,,}\phantom{\frac{1}{\sqrt{x}+\sqrt{x+1}}\cdot \Bigl[\frac{1}{2\sqrt{x}}+\frac{1}{2\sqrt{x+1}}\cdot (x+1)'\Bigr]}</math>}}
-
<math>=\frac{1}{\sqrt{x}+\sqrt{x+1}}\centerdot \left[ \frac{\sqrt{x+1}+\sqrt{x}}{2\sqrt{x}\sqrt{x+1}} \right]</math>,
+
and we can then eliminate the factor <math>\sqrt{x+1}+\sqrt{x}</math> from the numerator and denominator to get
-
 
+
-
and we can then eliminate the factor
+
-
<math>\sqrt{x+1}+\sqrt{x}</math>
+
-
from the numerator and denominator to get
+
-
 
+
-
<math>=\frac{1}{2\sqrt{x}\sqrt{x+1}}</math>
+
{{Displayed math||<math>\phantom{\frac{d}{dx}\,\ln\bigl( \bbox[#FFEEAA;,1.5pt]{\sqrt{x}+\sqrt{x+1}} \bigr)}{}
 +
= {}\rlap{\frac{1}{2\sqrt{x}\sqrt{x+1}}\,\textrm{.}}\phantom{\frac{1}{\sqrt{x}+\sqrt{x+1}}\cdot \Bigl[\frac{1}{2\sqrt{x}}+\frac{1}{2\sqrt{x+1}}\cdot (x+1)'\Bigr]}</math>}}

Version vom 11:41, 15. Okt. 2008

There is a "ln of something", so a first step in the differentiation is to take the derivative of the logarithm,

\displaystyle \frac{d}{dx}\,\ln\bigl( \bbox[#FFEEAA;,1.5pt]{\sqrt{x}+\sqrt{x+1}} \bigr) = {}\rlap{\frac{1}{\bbox[#FFEEAA;,1.5pt]{\sqrt{x}+\sqrt{x+1}}}\cdot \bigl( \bbox[#FFEEAA;,1.5pt]{\sqrt{x}+\sqrt{x+1}} \bigr)'\,\textrm{.}}\phantom{\frac{1}{\sqrt{x}+\sqrt{x+1}}\cdot \Bigl[\frac{1}{2\sqrt{x}}+\frac{1}{2\sqrt{x+1}}\cdot (x+1)'\Bigr]}

We can carry out the differentiation of \displaystyle \sqrt{x}+\sqrt{x+1} on the right-hand side term by term to obtain

\displaystyle \phantom{\frac{d}{dx}\,\ln\bigl( \bbox[#FFEEAA;,1.5pt]{\sqrt{x}+\sqrt{x+1}} \bigr)}{} = {}\rlap{\frac{1}{\sqrt{x}+\sqrt{x+1}}\cdot \bigl[ (\sqrt{x})' + (\sqrt{x+1})'\bigr]}\phantom{\frac{1}{\sqrt{x}+\sqrt{x+1}}\cdot \Bigl[\frac{1}{2\sqrt{x}}+\frac{1}{2\sqrt{x+1}}\cdot (x+1)'\Bigr]}

and it remains then only to differentiate \displaystyle \sqrt{x}, which we do directly, and \displaystyle \sqrt{x+1} (which has a simple inner derivative),

\displaystyle \begin{align}

\phantom{\frac{d}{dx}\,\ln\bigl( \bbox[#FFEEAA;,1.5pt]{\sqrt{x}+\sqrt{x+1}} \bigr)}{} &= \frac{1}{\sqrt{x}+\sqrt{x+1}}\cdot \Bigl[\frac{1}{2\sqrt{x}}+\frac{1}{2\sqrt{x+1}}\cdot (x+1)'\Bigr]\\[5pt] &= \frac{1}{\sqrt{x}+\sqrt{x+1}}\cdot \Bigl[\frac{1}{2\sqrt{x}}+\frac{1}{2\sqrt{x+1}}\cdot 1\Bigr]\,\textrm{.} \end{align}

If we rewrite the expression inside the square brackets using a common denominator, we get

\displaystyle \phantom{\frac{d}{dx}\,\ln\bigl( \bbox[#FFEEAA;,1.5pt]{\sqrt{x}+\sqrt{x+1}} \bigr)}{}

= {}\rlap{\frac{1}{\sqrt{x}+\sqrt{x+1}}\cdot \Bigl[\frac{\sqrt{x+1}+\sqrt{x}}{2\sqrt{x}\sqrt{x+1}} \Bigr]\,,}\phantom{\frac{1}{\sqrt{x}+\sqrt{x+1}}\cdot \Bigl[\frac{1}{2\sqrt{x}}+\frac{1}{2\sqrt{x+1}}\cdot (x+1)'\Bigr]}

and we can then eliminate the factor \displaystyle \sqrt{x+1}+\sqrt{x} from the numerator and denominator to get

\displaystyle \phantom{\frac{d}{dx}\,\ln\bigl( \bbox[#FFEEAA;,1.5pt]{\sqrt{x}+\sqrt{x+1}} \bigr)}{}

= {}\rlap{\frac{1}{2\sqrt{x}\sqrt{x+1}}\,\textrm{.}}\phantom{\frac{1}{\sqrt{x}+\sqrt{x+1}}\cdot \Bigl[\frac{1}{2\sqrt{x}}+\frac{1}{2\sqrt{x+1}}\cdot (x+1)'\Bigr]}