Lösung 1.2:2f
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K |
|||
Zeile 1: | Zeile 1: | ||
The entire expression is made up of several levels, | The entire expression is made up of several levels, | ||
+ | {{Displayed math||<math>\cos \bbox[#FFEEAA;,1.5pt]{\sqrt{\bbox[#FFCC33;,1.5pt]{1-x} } }</math>}} | ||
- | + | and when we differentiate we go from the outside inwards. In the first stage, we consider the expression as "cosine of something", | |
+ | {{Displayed math||<math>\cos \bbox[#FFEEAA;,1.5pt]{\phantom{\sqrt{\bbox[#FFCC33;,1.5pt]{1-x} } } }\,,</math>}} | ||
- | and | + | and differentiate this using the chain rule, |
+ | {{Displayed math||<math>\frac{d}{dx}\,\cos \bbox[#FFEEAA;,1.5pt]{\sqrt{1-x} } = -\sin \bbox[#FFEEAA;,1.5pt]{\sqrt{1-x} }\cdot \bigl(\bbox[#FFEEAA;,1.5pt]{\sqrt{1-x} }\,\bigr)'\,\textrm{.}</math>}} | ||
- | + | In the next differentiation, we have "the square root of something", | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | In the next differentiation, we have "the root of something", | + | |
- | + | ||
- | + | ||
- | + | ||
+ | {{Displayed math||<math>\bigl( \sqrt{\bbox[#FFCC33;,1.5pt]{1-x}}\,\bigr)' = \frac{1}{2\sqrt{\bbox[#FFCC33;,1.5pt]{1-x}}}\cdot \bbox[#FFCC33;,1.5pt]{(1-x)}^{\,\prime}\,,</math>}} | ||
where we have used the differentiation rule, | where we have used the differentiation rule, | ||
- | + | {{Displayed math||<math>\frac{d}{dx}\,\bigl(\sqrt{x}\,\bigr) = \frac{1}{2\sqrt{x}}\,\textrm{.}</math>}} | |
- | <math>\frac{d}{dx}\ | + | |
- | + | ||
for the outer derivative. | for the outer derivative. | ||
- | The whole differentiation in one go becomes | + | The whole differentiation in one go becomes |
- | + | ||
- | <math>\begin{align} | + | {{Displayed math||<math>\begin{align} |
- | + | \frac{d}{dx}\cos\sqrt{1-x} | |
- | & =-\sin \sqrt{1-x}\ | + | &= -\sin\sqrt{1-x}\cdot\frac{d}{dx}\,\sqrt{1-x}\\[5pt] |
- | & =-\sin \sqrt{1-x}\ | + | &= -\sin\sqrt{1-x}\cdot\frac{1}{2\sqrt{1-x}}\cdot\frac{d}{dx}\,(1-x)\\[5pt] |
- | & =\frac{\sin \sqrt{1-x}}{2\sqrt{1-x}} \\ | + | &= -\sin\sqrt{1-x}\cdot\frac{1}{2\sqrt{1-x}}\cdot (-1)\\[5pt] |
- | \end{align}</math> | + | &= \frac{\sin\sqrt{1-x}}{2\sqrt{1-x}}\,\textrm{.} |
+ | \end{align}</math>}} |
Version vom 10:49, 15. Okt. 2008
The entire expression is made up of several levels,
\displaystyle \cos \bbox[#FFEEAA;,1.5pt]{\sqrt{\bbox[#FFCC33;,1.5pt]{1-x} } } |
and when we differentiate we go from the outside inwards. In the first stage, we consider the expression as "cosine of something",
\displaystyle \cos \bbox[#FFEEAA;,1.5pt]{\phantom{\sqrt{\bbox[#FFCC33;,1.5pt]{1-x} } } }\,, |
and differentiate this using the chain rule,
\displaystyle \frac{d}{dx}\,\cos \bbox[#FFEEAA;,1.5pt]{\sqrt{1-x} } = -\sin \bbox[#FFEEAA;,1.5pt]{\sqrt{1-x} }\cdot \bigl(\bbox[#FFEEAA;,1.5pt]{\sqrt{1-x} }\,\bigr)'\,\textrm{.} |
In the next differentiation, we have "the square root of something",
\displaystyle \bigl( \sqrt{\bbox[#FFCC33;,1.5pt]{1-x}}\,\bigr)' = \frac{1}{2\sqrt{\bbox[#FFCC33;,1.5pt]{1-x}}}\cdot \bbox[#FFCC33;,1.5pt]{(1-x)}^{\,\prime}\,, |
where we have used the differentiation rule,
\displaystyle \frac{d}{dx}\,\bigl(\sqrt{x}\,\bigr) = \frac{1}{2\sqrt{x}}\,\textrm{.} |
for the outer derivative.
The whole differentiation in one go becomes
\displaystyle \begin{align}
\frac{d}{dx}\cos\sqrt{1-x} &= -\sin\sqrt{1-x}\cdot\frac{d}{dx}\,\sqrt{1-x}\\[5pt] &= -\sin\sqrt{1-x}\cdot\frac{1}{2\sqrt{1-x}}\cdot\frac{d}{dx}\,(1-x)\\[5pt] &= -\sin\sqrt{1-x}\cdot\frac{1}{2\sqrt{1-x}}\cdot (-1)\\[5pt] &= \frac{\sin\sqrt{1-x}}{2\sqrt{1-x}}\,\textrm{.} \end{align} |