Lösung 1.2:2f

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
The entire expression is made up of several levels,
The entire expression is made up of several levels,
 +
{{Displayed math||<math>\cos \bbox[#FFEEAA;,1.5pt]{\sqrt{\bbox[#FFCC33;,1.5pt]{1-x} } }</math>}}
-
<math>\cos \left\{ \left. \sqrt{\left\{ \left. 1-x \right\} \right.} \right\} \right.</math>
+
and when we differentiate we go from the outside inwards. In the first stage, we consider the expression as "cosine of something",
 +
{{Displayed math||<math>\cos \bbox[#FFEEAA;,1.5pt]{\phantom{\sqrt{\bbox[#FFCC33;,1.5pt]{1-x} } } }\,,</math>}}
-
and when we differentiate we go from the outside inwards. In the first stage, we consider the expression as "cos of something",
+
and differentiate this using the chain rule,
 +
{{Displayed math||<math>\frac{d}{dx}\,\cos \bbox[#FFEEAA;,1.5pt]{\sqrt{1-x} } = -\sin \bbox[#FFEEAA;,1.5pt]{\sqrt{1-x} }\cdot \bigl(\bbox[#FFEEAA;,1.5pt]{\sqrt{1-x} }\,\bigr)'\,\textrm{.}</math>}}
-
<math>\cos \left\{ \left. {} \right\} \right.</math>
+
In the next differentiation, we have "the square root of something",
-
 
+
-
 
+
-
and differentiate this using the chain rule:
+
-
 
+
-
 
+
-
<math>\frac{d}{dx}\cos \left\{ \left. \sqrt{1-x} \right\} \right.=-\sin \left\{ \left. \sqrt{1-x} \right\} \right.\centerdot \left( \left\{ \left. \sqrt{1-x} \right\} \right. \right)^{\prime }</math>
+
-
 
+
-
 
+
-
In the next differentiation, we have "the root of something",
+
-
 
+
-
 
+
-
<math>\left( \sqrt{\left\{ \left. 1-x \right\} \right.} \right)^{\prime }=\frac{1}{2\sqrt{1-x}}\centerdot \left( 1-x \right)^{\prime }</math>
+
 +
{{Displayed math||<math>\bigl( \sqrt{\bbox[#FFCC33;,1.5pt]{1-x}}\,\bigr)' = \frac{1}{2\sqrt{\bbox[#FFCC33;,1.5pt]{1-x}}}\cdot \bbox[#FFCC33;,1.5pt]{(1-x)}^{\,\prime}\,,</math>}}
where we have used the differentiation rule,
where we have used the differentiation rule,
-
 
+
{{Displayed math||<math>\frac{d}{dx}\,\bigl(\sqrt{x}\,\bigr) = \frac{1}{2\sqrt{x}}\,\textrm{.}</math>}}
-
<math>\frac{d}{dx}\left( \sqrt{x} \right)=\frac{1}{2\sqrt{x}}</math>
+
-
 
+
for the outer derivative.
for the outer derivative.
-
The whole differentiation in one go becomes:
+
The whole differentiation in one go becomes
-
 
+
-
<math>\begin{align}
+
{{Displayed math||<math>\begin{align}
-
& \frac{d}{dx}\cos \sqrt{1-x}=-\sin \sqrt{1-x}\centerdot \frac{d}{dx}\sqrt{1-x} \\
+
\frac{d}{dx}\cos\sqrt{1-x}
-
& =-\sin \sqrt{1-x}\centerdot \frac{1}{2\sqrt{1-x}}\centerdot \frac{d}{dx}\left( 1-x \right) \\
+
&= -\sin\sqrt{1-x}\cdot\frac{d}{dx}\,\sqrt{1-x}\\[5pt]
-
& =-\sin \sqrt{1-x}\centerdot \frac{1}{2\sqrt{1-x}}\centerdot \left( -1 \right) \\
+
&= -\sin\sqrt{1-x}\cdot\frac{1}{2\sqrt{1-x}}\cdot\frac{d}{dx}\,(1-x)\\[5pt]
-
& =\frac{\sin \sqrt{1-x}}{2\sqrt{1-x}} \\
+
&= -\sin\sqrt{1-x}\cdot\frac{1}{2\sqrt{1-x}}\cdot (-1)\\[5pt]
-
\end{align}</math>
+
&= \frac{\sin\sqrt{1-x}}{2\sqrt{1-x}}\,\textrm{.}
 +
\end{align}</math>}}

Version vom 10:49, 15. Okt. 2008

The entire expression is made up of several levels,

\displaystyle \cos \bbox[#FFEEAA;,1.5pt]{\sqrt{\bbox[#FFCC33;,1.5pt]{1-x} } }

and when we differentiate we go from the outside inwards. In the first stage, we consider the expression as "cosine of something",

\displaystyle \cos \bbox[#FFEEAA;,1.5pt]{\phantom{\sqrt{\bbox[#FFCC33;,1.5pt]{1-x} } } }\,,

and differentiate this using the chain rule,

\displaystyle \frac{d}{dx}\,\cos \bbox[#FFEEAA;,1.5pt]{\sqrt{1-x} } = -\sin \bbox[#FFEEAA;,1.5pt]{\sqrt{1-x} }\cdot \bigl(\bbox[#FFEEAA;,1.5pt]{\sqrt{1-x} }\,\bigr)'\,\textrm{.}

In the next differentiation, we have "the square root of something",

\displaystyle \bigl( \sqrt{\bbox[#FFCC33;,1.5pt]{1-x}}\,\bigr)' = \frac{1}{2\sqrt{\bbox[#FFCC33;,1.5pt]{1-x}}}\cdot \bbox[#FFCC33;,1.5pt]{(1-x)}^{\,\prime}\,,

where we have used the differentiation rule,

\displaystyle \frac{d}{dx}\,\bigl(\sqrt{x}\,\bigr) = \frac{1}{2\sqrt{x}}\,\textrm{.}

for the outer derivative.

The whole differentiation in one go becomes

\displaystyle \begin{align}

\frac{d}{dx}\cos\sqrt{1-x} &= -\sin\sqrt{1-x}\cdot\frac{d}{dx}\,\sqrt{1-x}\\[5pt] &= -\sin\sqrt{1-x}\cdot\frac{1}{2\sqrt{1-x}}\cdot\frac{d}{dx}\,(1-x)\\[5pt] &= -\sin\sqrt{1-x}\cdot\frac{1}{2\sqrt{1-x}}\cdot (-1)\\[5pt] &= \frac{\sin\sqrt{1-x}}{2\sqrt{1-x}}\,\textrm{.} \end{align}