Lösung 1.2:2d
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K |
|||
Zeile 1: | Zeile 1: | ||
We can see the expression as "ln of something", | We can see the expression as "ln of something", | ||
+ | {{Displayed math||<math>\ln \bbox[#FFEEAA;,1.5pt]{\phantom{\ln x}}\,,</math>}} | ||
- | + | where "something" is <math>\ln x</math>. | |
- | + | ||
- | where "something" is | + | |
- | <math>\ln x</math>. | + | |
Because we have a compound expression, we use the chain rule and obtain, roughly speaking, the outer derivative multiplied by the inner derivative, | Because we have a compound expression, we use the chain rule and obtain, roughly speaking, the outer derivative multiplied by the inner derivative, | ||
+ | {{Displayed math||<math>\frac{d}{dx}\,\ln \bbox[#FFEEAA;,1.5pt]{\,\ln x\,} = \frac{1}{\bbox[#FFEEAA;,1.5pt]{\,\ln x\,}}\cdot \bigl( \bbox[#FFEEAA;,1.5pt]{\,\ln x\,} \bigr)'\,,</math>}} | ||
- | + | where the first factor on the right-hand side <math>1/\bbox[#FFEEAA;,1.5pt]{\,\ln x\,}</math> is the outer derivative of <math>\ln \bbox[#FFEEAA;,1.5pt]{\,\ln x\,}</math> and the other factor <math>\bigl( \bbox[#FFEEAA;,1.5pt]{\,\ln x\,} \bigr)'</math> is the inner derivative. Thus, we get | |
- | + | ||
- | + | ||
- | where the first factor on the right-hand side | + | |
- | <math>\ | + | |
- | is the outer derivative of | + | |
- | <math>\ln \ | + | |
- | and the other factor | + | |
- | <math>\ | + | |
- | is the inner derivative. Thus, we get | + | |
- | + | ||
- | <math>\frac{d}{dx}\ln | + | {{Displayed math||<math>\frac{d}{dx}\,\ln\ln x = \frac{1}{\ln x}\cdot \frac{1}{x} = \frac{1}{x\ln x}\,\textrm{.}</math>}} |
Version vom 08:21, 15. Okt. 2008
We can see the expression as "ln of something",
\displaystyle \ln \bbox[#FFEEAA;,1.5pt]{\phantom{\ln x}}\,, |
where "something" is \displaystyle \ln x.
Because we have a compound expression, we use the chain rule and obtain, roughly speaking, the outer derivative multiplied by the inner derivative,
\displaystyle \frac{d}{dx}\,\ln \bbox[#FFEEAA;,1.5pt]{\,\ln x\,} = \frac{1}{\bbox[#FFEEAA;,1.5pt]{\,\ln x\,}}\cdot \bigl( \bbox[#FFEEAA;,1.5pt]{\,\ln x\,} \bigr)'\,, |
where the first factor on the right-hand side \displaystyle 1/\bbox[#FFEEAA;,1.5pt]{\,\ln x\,} is the outer derivative of \displaystyle \ln \bbox[#FFEEAA;,1.5pt]{\,\ln x\,} and the other factor \displaystyle \bigl( \bbox[#FFEEAA;,1.5pt]{\,\ln x\,} \bigr)' is the inner derivative. Thus, we get
\displaystyle \frac{d}{dx}\,\ln\ln x = \frac{1}{\ln x}\cdot \frac{1}{x} = \frac{1}{x\ln x}\,\textrm{.} |