Lösung 1.2:1f
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K (Lösning 1.2:1f moved to Solution 1.2:1f: Robot: moved page) |
K |
||
Zeile 1: | Zeile 1: | ||
- | In this case, we have a slightly more complicated expression, but if we focus on the expression's outer form, we have essentially "something divided by | + | In this case, we have a slightly more complicated expression, but if we focus on the expression's outer form, we have essentially "something divided by <math>\sin x</math>". As a first step, we therefore use the quotient rule, |
- | <math>\sin x</math> | + | |
- | ". As a first step, we therefore use the quotient rule, | + | |
+ | {{Displayed math||<math>\Bigl(\frac{x\ln x}{\sin x}\Bigr)' = \frac{(x\ln x)'\cdot \sin x - x\ln x\cdot (\sin x)'}{(\sin x)^2}\,\textrm{.}</math>}} | ||
- | + | We can, in turn, differentiate the expression <math>x\ln x</math> by using the product rule, | |
- | + | ||
- | + | ||
- | We can, in turn, differentiate the expression | + | |
- | <math>x\ln x</math> | + | |
- | by using the product rule | + | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
+ | {{Displayed math||<math>\begin{align} | ||
+ | (x\ln x)' | ||
+ | &= (x)'\ln x + x\,(\ln x)'\\[5pt] | ||
+ | &= 1\cdot\ln x + x\cdot\frac{1}{x}\\[5pt] | ||
+ | &= \ln x+1\,\textrm{.} | ||
+ | \end{align}</math>}} | ||
All in all, we thus obtain | All in all, we thus obtain | ||
- | + | {{Displayed math||<math>\begin{align} | |
- | <math>\begin{align} | + | \Bigl(\frac{x\ln x}{\sin x}\Bigr)' |
- | + | &= \frac{(\ln x+1)\cdot\sin x - x\ln x\cdot \cos x}{(\sin x)^2}\\[5pt] | |
- | + | &= \frac{\ln x+1}{\sin x}-\frac{x\ln x\cos x}{\sin^2\!x}\,\textrm{.} | |
- | & =\frac{\ln x+1}{\sin x}-\frac{x\ln x\cos x}{\sin ^ | + | \end{align}</math>}} |
- | \end{align}</math> | + |
Version vom 14:22, 14. Okt. 2008
In this case, we have a slightly more complicated expression, but if we focus on the expression's outer form, we have essentially "something divided by \displaystyle \sin x". As a first step, we therefore use the quotient rule,
\displaystyle \Bigl(\frac{x\ln x}{\sin x}\Bigr)' = \frac{(x\ln x)'\cdot \sin x - x\ln x\cdot (\sin x)'}{(\sin x)^2}\,\textrm{.} |
We can, in turn, differentiate the expression \displaystyle x\ln x by using the product rule,
\displaystyle \begin{align}
(x\ln x)' &= (x)'\ln x + x\,(\ln x)'\\[5pt] &= 1\cdot\ln x + x\cdot\frac{1}{x}\\[5pt] &= \ln x+1\,\textrm{.} \end{align} |
All in all, we thus obtain
\displaystyle \begin{align}
\Bigl(\frac{x\ln x}{\sin x}\Bigr)' &= \frac{(\ln x+1)\cdot\sin x - x\ln x\cdot \cos x}{(\sin x)^2}\\[5pt] &= \frac{\ln x+1}{\sin x}-\frac{x\ln x\cos x}{\sin^2\!x}\,\textrm{.} \end{align} |