Lösung 1.2:1d
Aus Online Mathematik Brückenkurs 2
K (Lösning 1.2:1d moved to Solution 1.2:1d: Robot: moved page) |
K |
||
Zeile 1: | Zeile 1: | ||
- | We have a quotient between | + | We have a quotient between <math>\sin x</math> and <math>x</math>, and therefore one way to differentiate the expression is to use the quotient rule, |
- | <math>\sin x</math> | + | |
- | and | + | |
- | <math>x</math>, and therefore one way to differentiate the expression is to use the quotient rule | + | |
+ | {{Displayed math||<math>\begin{align} | ||
+ | \Bigl(\frac{\sin x}{x}\Bigr)' | ||
+ | &= \frac{(\sin x)'\cdot x - \sin x\cdot (x)'}{x^2}\\[5pt] | ||
+ | &= \frac{\cos x\cdot x - \sin x\cdot 1}{x^2}\\[5pt] | ||
+ | &= \frac{\cos x}{x} - \frac{\sin x}{x^2}\,\textrm{.} | ||
+ | \end{align}</math>}} | ||
- | + | It is also possible to see the expression as a product of <math>\sin x</math> and | |
- | + | <math>1/x</math>, and to use the product rule, | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | It is also possible to see the expression as a product of | + | |
- | + | ||
- | <math>\sin x</math> | + | |
- | and | + | |
- | <math> | + | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
+ | {{Displayed math||<math>\begin{align} | ||
+ | \Bigl(\sin x\cdot\frac{1}{x}\Bigr)' | ||
+ | &= (\sin x)'\cdot\frac{1}{x} + \sin x\cdot\Bigl(\frac{1}{x}\Bigr)'\\[5pt] | ||
+ | &= \cos x\cdot\frac{1}{x} + \sin x\cdot\Bigl(-\frac{1}{x^2}\Bigr)\\[5pt] | ||
+ | &= \frac{\cos x}{x} - \frac{\sin x}{x^2}\,, | ||
+ | \end{align}</math>}} | ||
where we have used | where we have used | ||
- | + | {{Displayed math||<math>\Bigl(\frac{1}{x}\Bigr)' = \bigl(x^{-1}\bigr)' = (-1)x^{-1-1} = -1\cdot x^{-2} = -\frac{1}{x^2}\,\textrm{.}</math>}} | |
- | <math>\ | + |
Version vom 14:10, 14. Okt. 2008
We have a quotient between \displaystyle \sin x and \displaystyle x, and therefore one way to differentiate the expression is to use the quotient rule,
\displaystyle \begin{align}
\Bigl(\frac{\sin x}{x}\Bigr)' &= \frac{(\sin x)'\cdot x - \sin x\cdot (x)'}{x^2}\\[5pt] &= \frac{\cos x\cdot x - \sin x\cdot 1}{x^2}\\[5pt] &= \frac{\cos x}{x} - \frac{\sin x}{x^2}\,\textrm{.} \end{align} |
It is also possible to see the expression as a product of \displaystyle \sin x and \displaystyle 1/x, and to use the product rule,
\displaystyle \begin{align}
\Bigl(\sin x\cdot\frac{1}{x}\Bigr)' &= (\sin x)'\cdot\frac{1}{x} + \sin x\cdot\Bigl(\frac{1}{x}\Bigr)'\\[5pt] &= \cos x\cdot\frac{1}{x} + \sin x\cdot\Bigl(-\frac{1}{x^2}\Bigr)\\[5pt] &= \frac{\cos x}{x} - \frac{\sin x}{x^2}\,, \end{align} |
where we have used
\displaystyle \Bigl(\frac{1}{x}\Bigr)' = \bigl(x^{-1}\bigr)' = (-1)x^{-1-1} = -1\cdot x^{-2} = -\frac{1}{x^2}\,\textrm{.} |