Lösung 1.1:2e

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
-
With the help of the square rule, we can expand the quadratic as
+
We expand the quadratic expression as
 +
{{Displayed math||<math>\begin{align}
 +
f(x) &= \bigl(x^2-1\bigr)^2\\[5pt]
 +
&= \bigl(x^2\bigr)^2 - 2\cdot x^2\cdot 1 + 1^2\\[5pt]
 +
&= x^4 - 2x^2 + 1\,\textrm{.}
 +
\end{align}</math>}}
-
<math>\begin{align}
+
When the function is written in this form, it is easy to differentiate term by term,
-
& f\left( x \right)=\left( x^{2}-1 \right)^{2}=\left( x^{2} \right)^{2}-2\centerdot x^{2}\centerdot 1+1^{2} \\
+
-
& =x^{4}-2x^{2}+1 \\
+
-
\end{align}</math>
+
-
 
+
{{Displayed math||<math>\begin{align}
-
When the function is written in this form, it is easy to differentiate term by term:
+
f^{\,\prime}(x) &= \frac{d}{dx}\,\bigl(x^4-2x^2+1\bigr)\\[5pt]
-
 
+
&= \frac{d}{dx}\,x^4 - 2\frac{d}{dx}\,x^2 + \frac{d}{dx}\,1\\[5pt]
-
 
+
&= 4\cdot x^{4-1} - 2\cdot 2x^{2-1} + 0\\[5pt]
-
<math>\begin{align}
+
&= 4x^{3} - 4x\\[5pt]
-
& {f}'\left( x \right)=\frac{d}{dx}\left( x^{4}-2x^{2}+1 \right) \\
+
&= 4x(x^2-1)\,\textrm{.}
-
& =\frac{d}{dx}x^{4}-2\frac{d}{dx}x^{2}+\frac{d}{dx}1 \\
+
\end{align}</math>}}
-
& =4\centerdot x^{-1}-2\centerdot 2x^{-1}+0 \\
+
-
& =4x^{3}-4x=4x\left( x^{2}-1 \right) \\
+
-
\end{align}</math>
+

Version vom 12:24, 14. Okt. 2008

We expand the quadratic expression as

\displaystyle \begin{align}

f(x) &= \bigl(x^2-1\bigr)^2\\[5pt] &= \bigl(x^2\bigr)^2 - 2\cdot x^2\cdot 1 + 1^2\\[5pt] &= x^4 - 2x^2 + 1\,\textrm{.} \end{align}

When the function is written in this form, it is easy to differentiate term by term,

\displaystyle \begin{align}

f^{\,\prime}(x) &= \frac{d}{dx}\,\bigl(x^4-2x^2+1\bigr)\\[5pt] &= \frac{d}{dx}\,x^4 - 2\frac{d}{dx}\,x^2 + \frac{d}{dx}\,1\\[5pt] &= 4\cdot x^{4-1} - 2\cdot 2x^{2-1} + 0\\[5pt] &= 4x^{3} - 4x\\[5pt] &= 4x(x^2-1)\,\textrm{.} \end{align}