Lösung 1.1:2e
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K |
|||
Zeile 1: | Zeile 1: | ||
- | + | We expand the quadratic expression as | |
+ | {{Displayed math||<math>\begin{align} | ||
+ | f(x) &= \bigl(x^2-1\bigr)^2\\[5pt] | ||
+ | &= \bigl(x^2\bigr)^2 - 2\cdot x^2\cdot 1 + 1^2\\[5pt] | ||
+ | &= x^4 - 2x^2 + 1\,\textrm{.} | ||
+ | \end{align}</math>}} | ||
- | + | When the function is written in this form, it is easy to differentiate term by term, | |
- | + | ||
- | + | ||
- | + | ||
- | + | {{Displayed math||<math>\begin{align} | |
- | + | f^{\,\prime}(x) &= \frac{d}{dx}\,\bigl(x^4-2x^2+1\bigr)\\[5pt] | |
- | + | &= \frac{d}{dx}\,x^4 - 2\frac{d}{dx}\,x^2 + \frac{d}{dx}\,1\\[5pt] | |
- | + | &= 4\cdot x^{4-1} - 2\cdot 2x^{2-1} + 0\\[5pt] | |
- | <math>\begin{align} | + | &= 4x^{3} - 4x\\[5pt] |
- | + | &= 4x(x^2-1)\,\textrm{.} | |
- | & =\frac{d}{dx}x^ | + | \end{align}</math>}} |
- | & =4\ | + | |
- | & =4x^{3}-4x=4x | + | |
- | \end{align}</math> | + |
Version vom 12:24, 14. Okt. 2008
We expand the quadratic expression as
\displaystyle \begin{align}
f(x) &= \bigl(x^2-1\bigr)^2\\[5pt] &= \bigl(x^2\bigr)^2 - 2\cdot x^2\cdot 1 + 1^2\\[5pt] &= x^4 - 2x^2 + 1\,\textrm{.} \end{align} |
When the function is written in this form, it is easy to differentiate term by term,
\displaystyle \begin{align}
f^{\,\prime}(x) &= \frac{d}{dx}\,\bigl(x^4-2x^2+1\bigr)\\[5pt] &= \frac{d}{dx}\,x^4 - 2\frac{d}{dx}\,x^2 + \frac{d}{dx}\,1\\[5pt] &= 4\cdot x^{4-1} - 2\cdot 2x^{2-1} + 0\\[5pt] &= 4x^{3} - 4x\\[5pt] &= 4x(x^2-1)\,\textrm{.} \end{align} |