Lösung 1.2:4a
Aus Online Mathematik Brückenkurs 2
K (Lösning 1.2:4a moved to Solution 1.2:4a: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | We are to differentiate the expression two times, so we start by differentiating once. The quotient rule gives |
- | + | ||
- | {{ | + | |
- | {{ | + | <math>\begin{align} |
- | < | + | & \frac{d}{dx}\frac{x}{\sqrt{1-x^{2}}}=\frac{\left( x \right)^{\prime }\sqrt{1-x^{2}}-x\left( \sqrt{1-x^{2}} \right)^{\prime }}{\left( \sqrt{1-x^{2}} \right)^{2}} \\ |
- | {{ | + | & \\ |
+ | & =\frac{1\centerdot \sqrt{1-x^{2}}-x\left( \sqrt{1-x^{2}} \right)^{\prime }}{1-x^{2}} \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | We determine the derivative | ||
+ | <math>\left( \sqrt{1-x^{2}} \right)^{\prime }</math> | ||
+ | by using the chain rule | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & =\frac{\sqrt{1-x^{2}}-x\centerdot \frac{1}{2\sqrt{1-x^{2}}}\centerdot \left( 1-x^{2} \right)^{\prime }}{1-x^{2}} \\ | ||
+ | & \\ | ||
+ | & =\frac{\sqrt{1-x^{2}}-x\centerdot \frac{1}{2\sqrt{1-x^{2}}}\centerdot \left( -2x \right)}{1-x^{2}} \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | We simplify the result as far as possible, so as to make the second differentiation easier: | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & =\frac{\sqrt{1-x^{2}}+\frac{x^{2}}{\sqrt{1-x^{2}}}}{1-x^{2}} \\ | ||
+ | & \\ | ||
+ | & =\frac{\frac{\left( \sqrt{1-x^{2}} \right)^{2}}{\sqrt{1-x^{2}}}+\frac{x^{2}}{\sqrt{1-x^{2}}}}{1-x^{2}} \\ | ||
+ | & \\ | ||
+ | & =\frac{\frac{1-x^{2}+x^{2}}{\sqrt{1-x^{2}}}}{1-x^{2}} \\ | ||
+ | & \\ | ||
+ | & =\frac{1}{\left( 1-x^{2} \right)^{{3}/{2}\;}} \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | The second derivative is: | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \frac{d^{^{2}}}{dx^{^{2}}}\frac{x}{\sqrt{1-x^{2}}}=\frac{d}{dx}\frac{1}{\left( 1-x^{2} \right)^{{3}/{2}\;}} \\ | ||
+ | & \\ | ||
+ | & =\frac{d}{dx}\left( 1-x^{2} \right)^{-{3}/{2}\;}=-\frac{3}{2}\left( 1-x^{2} \right)^{-\frac{3}{2}-1}\centerdot \left( 1-x^{2} \right)^{\prime } \\ | ||
+ | & \\ | ||
+ | & =-\frac{3}{2}\left( 1-x^{2} \right)^{{-5}/{2}\;}\centerdot \left( -2x \right)=3x\left( 1-x^{2} \right)^{{-5}/{2}\;} \\ | ||
+ | & \\ | ||
+ | & =\frac{3x}{\left( 1-x^{2} \right)^{{5}/{2}\;}} \\ | ||
+ | \end{align}</math> |
Version vom 14:04, 12. Okt. 2008
We are to differentiate the expression two times, so we start by differentiating once. The quotient rule gives
\displaystyle \begin{align}
& \frac{d}{dx}\frac{x}{\sqrt{1-x^{2}}}=\frac{\left( x \right)^{\prime }\sqrt{1-x^{2}}-x\left( \sqrt{1-x^{2}} \right)^{\prime }}{\left( \sqrt{1-x^{2}} \right)^{2}} \\
& \\
& =\frac{1\centerdot \sqrt{1-x^{2}}-x\left( \sqrt{1-x^{2}} \right)^{\prime }}{1-x^{2}} \\
\end{align}
We determine the derivative
\displaystyle \left( \sqrt{1-x^{2}} \right)^{\prime }
by using the chain rule
\displaystyle \begin{align}
& =\frac{\sqrt{1-x^{2}}-x\centerdot \frac{1}{2\sqrt{1-x^{2}}}\centerdot \left( 1-x^{2} \right)^{\prime }}{1-x^{2}} \\
& \\
& =\frac{\sqrt{1-x^{2}}-x\centerdot \frac{1}{2\sqrt{1-x^{2}}}\centerdot \left( -2x \right)}{1-x^{2}} \\
\end{align}
We simplify the result as far as possible, so as to make the second differentiation easier:
\displaystyle \begin{align}
& =\frac{\sqrt{1-x^{2}}+\frac{x^{2}}{\sqrt{1-x^{2}}}}{1-x^{2}} \\
& \\
& =\frac{\frac{\left( \sqrt{1-x^{2}} \right)^{2}}{\sqrt{1-x^{2}}}+\frac{x^{2}}{\sqrt{1-x^{2}}}}{1-x^{2}} \\
& \\
& =\frac{\frac{1-x^{2}+x^{2}}{\sqrt{1-x^{2}}}}{1-x^{2}} \\
& \\
& =\frac{1}{\left( 1-x^{2} \right)^{{3}/{2}\;}} \\
\end{align}
The second derivative is:
\displaystyle \begin{align}
& \frac{d^{^{2}}}{dx^{^{2}}}\frac{x}{\sqrt{1-x^{2}}}=\frac{d}{dx}\frac{1}{\left( 1-x^{2} \right)^{{3}/{2}\;}} \\
& \\
& =\frac{d}{dx}\left( 1-x^{2} \right)^{-{3}/{2}\;}=-\frac{3}{2}\left( 1-x^{2} \right)^{-\frac{3}{2}-1}\centerdot \left( 1-x^{2} \right)^{\prime } \\
& \\
& =-\frac{3}{2}\left( 1-x^{2} \right)^{{-5}/{2}\;}\centerdot \left( -2x \right)=3x\left( 1-x^{2} \right)^{{-5}/{2}\;} \\
& \\
& =\frac{3x}{\left( 1-x^{2} \right)^{{5}/{2}\;}} \\
\end{align}