Lösung 1.2:3f

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 1.2:3f moved to Solution 1.2:3f: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
We have no differentiation rule for a function raised to another function, but instead we rewrite
-
<center> [[Image:1_2_3f.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
 
 +
<math>a^{b}=e^{\ln a^{b}}=e^{b\ln a}</math>,
 +
 
 +
which, in our case, gives
 +
 
 +
 
 +
<math>x^{\tan x}=e^{\tan x\centerdot \ln x}</math>
 +
 
 +
 
 +
Now, we obtain the derivative by first using the chain rule
 +
 
 +
 
 +
<math>\frac{d}{dx}e^{\left\{ \left. \tan x\centerdot \ln x \right\} \right.}=e^{\left\{ \left. \tan x\centerdot \ln x \right\} \right.}\centerdot \left( \left\{ \left. \tan x\centerdot \ln x \right\} \right. \right)^{\prime }</math>
 +
 
 +
 
 +
and then the product rule:
 +
 
 +
 
 +
<math>\begin{align}
 +
& =e^{\tan x\centerdot \ln x}\left( \left( \tan x \right)^{\prime }\centerdot \ln x+\tan x\centerdot \left( \ln x \right)^{\prime } \right) \\
 +
& =e^{\tan x\centerdot \ln x}\left( \frac{1}{\cos ^{2}x}\centerdot \ln x+\tan x\centerdot \frac{1}{x} \right) \\
 +
& =e^{\tan x\centerdot \ln x}\left( \frac{\ln x}{\cos ^{2}x}+\frac{\tan x}{x} \right) \\
 +
& =x^{\tan x}\left( \frac{\ln x}{\cos ^{2}x}+\frac{\tan x}{x} \right) \\
 +
\end{align}</math>

Version vom 13:41, 12. Okt. 2008

We have no differentiation rule for a function raised to another function, but instead we rewrite


\displaystyle a^{b}=e^{\ln a^{b}}=e^{b\ln a},

which, in our case, gives


\displaystyle x^{\tan x}=e^{\tan x\centerdot \ln x}


Now, we obtain the derivative by first using the chain rule


\displaystyle \frac{d}{dx}e^{\left\{ \left. \tan x\centerdot \ln x \right\} \right.}=e^{\left\{ \left. \tan x\centerdot \ln x \right\} \right.}\centerdot \left( \left\{ \left. \tan x\centerdot \ln x \right\} \right. \right)^{\prime }


and then the product rule:


\displaystyle \begin{align} & =e^{\tan x\centerdot \ln x}\left( \left( \tan x \right)^{\prime }\centerdot \ln x+\tan x\centerdot \left( \ln x \right)^{\prime } \right) \\ & =e^{\tan x\centerdot \ln x}\left( \frac{1}{\cos ^{2}x}\centerdot \ln x+\tan x\centerdot \frac{1}{x} \right) \\ & =e^{\tan x\centerdot \ln x}\left( \frac{\ln x}{\cos ^{2}x}+\frac{\tan x}{x} \right) \\ & =x^{\tan x}\left( \frac{\ln x}{\cos ^{2}x}+\frac{\tan x}{x} \right) \\ \end{align}