Lösung 1.2:3b
Aus Online Mathematik Brückenkurs 2
K (Lösning 1.2:3b moved to Solution 1.2:3b: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | The outer function in the expression is "the root of something", |
- | < | + | |
- | {{ | + | |
- | {{ | + | <math>\sqrt{\left\{ \left. \frac{x+1}{x-1} \right\} \right.}</math> |
- | + | ||
- | {{ | + | |
+ | and differentiating with the chain rule gives | ||
+ | |||
+ | |||
+ | <math>\frac{d}{dx}\sqrt{\left\{ \left. \frac{x+1}{x-1} \right\} \right.}=\frac{1}{2\sqrt{\left\{ \left. \frac{x+1}{x-1} \right\} \right.}}\centerdot \left( \frac{x+1}{x-1} \right)^{\prime }</math> | ||
+ | |||
+ | |||
+ | We establish the inner derivative by using the quotient rule, | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \frac{d}{dx}\sqrt{\frac{x+1}{x-1}}=\frac{1}{2\sqrt{\frac{x+1}{x-1}}}\centerdot \frac{\left( x+1 \right)^{\prime }\centerdot \left( x-1 \right)-\left( x+1 \right)\centerdot \left( x-1 \right)^{\prime }}{\left( x-1 \right)^{2}} \\ | ||
+ | & =\frac{1}{2\sqrt{\frac{x+1}{x-1}}}\centerdot \frac{1\centerdot \left( x-1 \right)-\left( x+1 \right)\centerdot 1}{\left( x-1 \right)^{2}} \\ | ||
+ | & =\frac{1}{2\sqrt{\frac{x+1}{x-1}}}\centerdot \frac{-2}{\left( x-1 \right)^{2}} \\ | ||
+ | & =-\sqrt{\frac{x-1}{x+1}\centerdot }\frac{1}{\left( x-1 \right)^{2}} \\ | ||
+ | & =-\frac{1}{\left( x-1 \right)^{{3}/{2}\;}\sqrt{x+1}} \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | where we have used the simplification | ||
+ | |||
+ | |||
+ | <math>\frac{\sqrt{x-1}}{\left( x-1 \right)^{2}}=\frac{\left( x-1 \right)^{{1}/{2}\;}}{\left( x-1 \right)^{2}}=\left( x-1 \right)^{\frac{1}{2}-2}=\left( x-1 \right)^{-\frac{3}{2}}=\frac{1}{\left( x-1 \right)^{\frac{3}{2}}}</math> |
Version vom 12:45, 12. Okt. 2008
The outer function in the expression is "the root of something",
\displaystyle \sqrt{\left\{ \left. \frac{x+1}{x-1} \right\} \right.}
and differentiating with the chain rule gives
\displaystyle \frac{d}{dx}\sqrt{\left\{ \left. \frac{x+1}{x-1} \right\} \right.}=\frac{1}{2\sqrt{\left\{ \left. \frac{x+1}{x-1} \right\} \right.}}\centerdot \left( \frac{x+1}{x-1} \right)^{\prime }
We establish the inner derivative by using the quotient rule,
\displaystyle \begin{align}
& \frac{d}{dx}\sqrt{\frac{x+1}{x-1}}=\frac{1}{2\sqrt{\frac{x+1}{x-1}}}\centerdot \frac{\left( x+1 \right)^{\prime }\centerdot \left( x-1 \right)-\left( x+1 \right)\centerdot \left( x-1 \right)^{\prime }}{\left( x-1 \right)^{2}} \\
& =\frac{1}{2\sqrt{\frac{x+1}{x-1}}}\centerdot \frac{1\centerdot \left( x-1 \right)-\left( x+1 \right)\centerdot 1}{\left( x-1 \right)^{2}} \\
& =\frac{1}{2\sqrt{\frac{x+1}{x-1}}}\centerdot \frac{-2}{\left( x-1 \right)^{2}} \\
& =-\sqrt{\frac{x-1}{x+1}\centerdot }\frac{1}{\left( x-1 \right)^{2}} \\
& =-\frac{1}{\left( x-1 \right)^{{3}/{2}\;}\sqrt{x+1}} \\
\end{align}
where we have used the simplification
\displaystyle \frac{\sqrt{x-1}}{\left( x-1 \right)^{2}}=\frac{\left( x-1 \right)^{{1}/{2}\;}}{\left( x-1 \right)^{2}}=\left( x-1 \right)^{\frac{1}{2}-2}=\left( x-1 \right)^{-\frac{3}{2}}=\frac{1}{\left( x-1 \right)^{\frac{3}{2}}}