Lösung 1.2:3a
Aus Online Mathematik Brückenkurs 2
K (Lösning 1.2:3a moved to Solution 1.2:3a: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | There is a "ln of something", so a first step in the differentiation is to take the derivative of the logarithm: |
- | < | + | |
- | {{ | + | |
- | {{ | + | <math>\frac{d}{dx}\ln \left( \left\{ \left. \sqrt{x}+\sqrt{x+1} \right\} \right. \right)=\frac{1}{\left\{ \left. \sqrt{x}+\sqrt{x+1} \right\} \right.}\centerdot \left( \left\{ \left. \sqrt{x}+\sqrt{x+1} \right\} \right. \right)^{\prime }</math> |
- | + | ||
- | {{ | + | |
+ | We can carry out the differentiation of | ||
+ | <math>\sqrt{x}+\sqrt{x+1}</math> | ||
+ | on the right-hand side term by term to obtain | ||
+ | |||
+ | |||
+ | <math>\quad =\frac{1}{\sqrt{x}+\sqrt{x+1}}\centerdot \left[ \left( \sqrt{x} \right)^{\prime }+\left( \sqrt{x+1} \right)^{\prime } \right]</math> | ||
+ | |||
+ | |||
+ | and it remains then only to differentiate | ||
+ | <math>\sqrt{x}</math>,which we do directly, and | ||
+ | <math>\sqrt{x+1}</math> | ||
+ | which a simple inner derivative) | ||
+ | |||
+ | |||
+ | <math></math> | ||
+ | |||
+ | <math>\begin{align} | ||
+ | & =\frac{1}{\sqrt{x}+\sqrt{x+1}}\centerdot \left[ \frac{1}{2\sqrt{x}}+\frac{1}{2\sqrt{x+1}}\centerdot \left( x+1 \right)^{\prime } \right] \\ | ||
+ | & =\frac{1}{\sqrt{x}+\sqrt{x+1}}\centerdot \left[ \frac{1}{2\sqrt{x}}+\frac{1}{2\sqrt{x+1}}\centerdot 1 \right] \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | |||
+ | If we rewrite the expression inside the square brackets using a common denominator, we get | ||
+ | |||
+ | |||
+ | <math>=\frac{1}{\sqrt{x}+\sqrt{x+1}}\centerdot \left[ \frac{\sqrt{x+1}+\sqrt{x}}{2\sqrt{x}\sqrt{x+1}} \right]</math>, | ||
+ | |||
+ | and we can then eliminate the factor | ||
+ | <math>\sqrt{x+1}+\sqrt{x}</math> | ||
+ | from the numerator and denominator to get | ||
+ | |||
+ | |||
+ | <math>=\frac{1}{2\sqrt{x}\sqrt{x+1}}</math> |
Version vom 14:17, 11. Okt. 2008
There is a "ln of something", so a first step in the differentiation is to take the derivative of the logarithm:
\displaystyle \frac{d}{dx}\ln \left( \left\{ \left. \sqrt{x}+\sqrt{x+1} \right\} \right. \right)=\frac{1}{\left\{ \left. \sqrt{x}+\sqrt{x+1} \right\} \right.}\centerdot \left( \left\{ \left. \sqrt{x}+\sqrt{x+1} \right\} \right. \right)^{\prime }
We can carry out the differentiation of
\displaystyle \sqrt{x}+\sqrt{x+1}
on the right-hand side term by term to obtain
\displaystyle \quad =\frac{1}{\sqrt{x}+\sqrt{x+1}}\centerdot \left[ \left( \sqrt{x} \right)^{\prime }+\left( \sqrt{x+1} \right)^{\prime } \right]
and it remains then only to differentiate
\displaystyle \sqrt{x},which we do directly, and
\displaystyle \sqrt{x+1}
which a simple inner derivative)
\displaystyle
\displaystyle \begin{align} & =\frac{1}{\sqrt{x}+\sqrt{x+1}}\centerdot \left[ \frac{1}{2\sqrt{x}}+\frac{1}{2\sqrt{x+1}}\centerdot \left( x+1 \right)^{\prime } \right] \\ & =\frac{1}{\sqrt{x}+\sqrt{x+1}}\centerdot \left[ \frac{1}{2\sqrt{x}}+\frac{1}{2\sqrt{x+1}}\centerdot 1 \right] \\ \end{align}
If we rewrite the expression inside the square brackets using a common denominator, we get
\displaystyle =\frac{1}{\sqrt{x}+\sqrt{x+1}}\centerdot \left[ \frac{\sqrt{x+1}+\sqrt{x}}{2\sqrt{x}\sqrt{x+1}} \right],
and we can then eliminate the factor \displaystyle \sqrt{x+1}+\sqrt{x} from the numerator and denominator to get
\displaystyle =\frac{1}{2\sqrt{x}\sqrt{x+1}}