Lösung 1.2:2b

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 1.2:2b moved to Solution 1.2:2b: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
The whole expression consists of two parts: the outer part, "
-
<center> [[Image:1_2_2b.gif]] </center>
+
<math>e</math>
-
{{NAVCONTENT_STOP}}
+
raised to something",
 +
 
 +
 
 +
<math>e^{\left\{ \left. {} \right\} \right.}</math>
 +
 
 +
 
 +
where "something" is the inner part
 +
<math>\left\{ \left. {} \right\} \right.=x^{2}+x</math>. The derivative is calculated according to the chain rule by differentiating
 +
<math>e^{\left\{ \left. {} \right\} \right.}</math>
 +
with respect to
 +
<math>\left\{ \left. {} \right\} \right.</math>
 +
and then multiplying by the inner derivative
 +
<math>\left( \left\{ \left. {} \right\} \right. \right)^{\prime }</math>, i.e.
 +
 
 +
 
 +
<math>\frac{d}{dx}e^{\left\{ \left. x^{2}+x \right\} \right.}=e^{\left\{ \left. x^{2}+x \right\} \right.}\centerdot \left( \left\{ \left. x^{2}+x \right\} \right. \right)^{\prime }</math>
 +
 
 +
 
 +
The inner part is an ordinary polynomial which we differentiate directly:
 +
 
 +
 
 +
<math>\frac{d}{dx}e^{\left\{ \left. x^{2}+x \right\} \right.}=e^{\left\{ \left. x^{2}+x \right\} \right.}\centerdot \left( 2x+1 \right)</math>

Version vom 12:56, 11. Okt. 2008

The whole expression consists of two parts: the outer part, " \displaystyle e raised to something",


\displaystyle e^{\left\{ \left. {} \right\} \right.}


where "something" is the inner part \displaystyle \left\{ \left. {} \right\} \right.=x^{2}+x. The derivative is calculated according to the chain rule by differentiating \displaystyle e^{\left\{ \left. {} \right\} \right.} with respect to \displaystyle \left\{ \left. {} \right\} \right. and then multiplying by the inner derivative \displaystyle \left( \left\{ \left. {} \right\} \right. \right)^{\prime }, i.e.


\displaystyle \frac{d}{dx}e^{\left\{ \left. x^{2}+x \right\} \right.}=e^{\left\{ \left. x^{2}+x \right\} \right.}\centerdot \left( \left\{ \left. x^{2}+x \right\} \right. \right)^{\prime }


The inner part is an ordinary polynomial which we differentiate directly:


\displaystyle \frac{d}{dx}e^{\left\{ \left. x^{2}+x \right\} \right.}=e^{\left\{ \left. x^{2}+x \right\} \right.}\centerdot \left( 2x+1 \right)