Lösung 1.1:3

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 1.1:3 moved to Solution 1.1:3: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
The ball hits the ground when its height is zero, i.e. when
-
<center> [[Image:1_1_3-1(2).gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
 
-
{{NAVCONTENT_START}}
+
<math>h\left( t \right)=10-\frac{9.82}{2}t^{2}=0</math>
-
<center> [[Image:1_1_3-2(2).gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
This second-degree equation has the solutions
 +
 
 +
 
 +
<math>t=\pm \sqrt{\frac{2\centerdot 10}{9.82}}</math>
 +
 
 +
 
 +
where the positive root is the time when the ball hits the ground.
 +
 
 +
We obtain the ball's speed as a function of time as the time derivative of the height,
 +
 
 +
 
 +
<math>v\left( t \right)={h}'\left( t \right)=\frac{d}{dx}\left( 10-\frac{9.82}{2}t^{2} \right)=-9.82t</math>
 +
 
 +
 
 +
If we substitute the time when the ball hits the ground, we obtain the ball's speed at that instant,
 +
 
 +
 
 +
<math>\begin{align}
 +
& v\left( \sqrt{\frac{2\centerdot 10}{9.82}} \right)=-9.82\centerdot \sqrt{\frac{2\centerdot 10}{9.82}}=-\sqrt{9.82^{2}\centerdot \frac{2\centerdot 10}{9.82}} \\
 +
& =\sqrt{9.82\centerdot 2\centerdot 10}=-\sqrt{196.4}\approx -14.0 \\
 +
\end{align}</math>
 +
 
 +
 
 +
The minus sign shows that the speed is directed downwards, and the ball's speed is therefore
 +
<math>\text{14}.0\text{ }</math>
 +
m/s.

Version vom 11:58, 10. Okt. 2008

The ball hits the ground when its height is zero, i.e. when


\displaystyle h\left( t \right)=10-\frac{9.82}{2}t^{2}=0

This second-degree equation has the solutions


\displaystyle t=\pm \sqrt{\frac{2\centerdot 10}{9.82}}


where the positive root is the time when the ball hits the ground.

We obtain the ball's speed as a function of time as the time derivative of the height,


\displaystyle v\left( t \right)={h}'\left( t \right)=\frac{d}{dx}\left( 10-\frac{9.82}{2}t^{2} \right)=-9.82t


If we substitute the time when the ball hits the ground, we obtain the ball's speed at that instant,


\displaystyle \begin{align} & v\left( \sqrt{\frac{2\centerdot 10}{9.82}} \right)=-9.82\centerdot \sqrt{\frac{2\centerdot 10}{9.82}}=-\sqrt{9.82^{2}\centerdot \frac{2\centerdot 10}{9.82}} \\ & =\sqrt{9.82\centerdot 2\centerdot 10}=-\sqrt{196.4}\approx -14.0 \\ \end{align}


The minus sign shows that the speed is directed downwards, and the ball's speed is therefore \displaystyle \text{14}.0\text{ } m/s.