Lösung 1.1:2f
Aus Online Mathematik Brückenkurs 2
K (Lösning 1.1:2f moved to Solution 1.1:2f: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | We can rewrite the function using a trigonometric addition formula: |
- | < | + | |
- | {{ | + | |
+ | <math>f\left( x \right)=\cos \left( x+\frac{\pi }{3} \right)=\cos x\centerdot \cos \frac{\pi }{3}-\sin x\centerdot \sin \frac{\pi }{3}</math> | ||
+ | |||
+ | |||
+ | If we now differentiate this expression, | ||
+ | <math>\cos \frac{\pi }{3}</math> | ||
+ | and | ||
+ | <math>\sin \frac{\pi }{3}</math> | ||
+ | are constants and we obtain | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & {f}'\left( x \right)=\frac{d}{dx}\left( \cos x\centerdot \cos \frac{\pi }{3}-\sin x\centerdot \sin \frac{\pi }{3} \right) \\ | ||
+ | & =\cos \frac{\pi }{3}\centerdot \frac{d}{dx}\cos x-\sin \frac{\pi }{3}\centerdot \frac{d}{dx}\sin x \\ | ||
+ | & =\cos \frac{\pi }{3}\centerdot \left( -\sin x \right)-\sin \frac{\pi }{3}\centerdot \cos x \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | If we then use the addition formula in reverse, this gives | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & {f}'\left( x \right)=-\left( \sin x\centerdot \cos \frac{\pi }{3}+\cos x\centerdot \sin \frac{\pi }{3} \right) \\ | ||
+ | & =-\sin \left( x+\frac{\pi }{3} \right) \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | NOTE: In the next section, we will go through differentiation rules which make it possible to differentiate the expression directly without rewriting in this way. |
Version vom 11:49, 10. Okt. 2008
We can rewrite the function using a trigonometric addition formula:
\displaystyle f\left( x \right)=\cos \left( x+\frac{\pi }{3} \right)=\cos x\centerdot \cos \frac{\pi }{3}-\sin x\centerdot \sin \frac{\pi }{3}
If we now differentiate this expression,
\displaystyle \cos \frac{\pi }{3}
and
\displaystyle \sin \frac{\pi }{3}
are constants and we obtain
\displaystyle \begin{align}
& {f}'\left( x \right)=\frac{d}{dx}\left( \cos x\centerdot \cos \frac{\pi }{3}-\sin x\centerdot \sin \frac{\pi }{3} \right) \\
& =\cos \frac{\pi }{3}\centerdot \frac{d}{dx}\cos x-\sin \frac{\pi }{3}\centerdot \frac{d}{dx}\sin x \\
& =\cos \frac{\pi }{3}\centerdot \left( -\sin x \right)-\sin \frac{\pi }{3}\centerdot \cos x \\
\end{align}
If we then use the addition formula in reverse, this gives
\displaystyle \begin{align}
& {f}'\left( x \right)=-\left( \sin x\centerdot \cos \frac{\pi }{3}+\cos x\centerdot \sin \frac{\pi }{3} \right) \\
& =-\sin \left( x+\frac{\pi }{3} \right) \\
\end{align}
NOTE: In the next section, we will go through differentiation rules which make it possible to differentiate the expression directly without rewriting in this way.