Lösung 1.1:2f

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 1.1:2f moved to Solution 1.1:2f: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
We can rewrite the function using a trigonometric addition formula:
-
<center> [[Image:1_1_2f.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
 
 +
<math>f\left( x \right)=\cos \left( x+\frac{\pi }{3} \right)=\cos x\centerdot \cos \frac{\pi }{3}-\sin x\centerdot \sin \frac{\pi }{3}</math>
 +
 
 +
 
 +
If we now differentiate this expression,
 +
<math>\cos \frac{\pi }{3}</math>
 +
and
 +
<math>\sin \frac{\pi }{3}</math>
 +
are constants and we obtain
 +
 
 +
 
 +
<math>\begin{align}
 +
& {f}'\left( x \right)=\frac{d}{dx}\left( \cos x\centerdot \cos \frac{\pi }{3}-\sin x\centerdot \sin \frac{\pi }{3} \right) \\
 +
& =\cos \frac{\pi }{3}\centerdot \frac{d}{dx}\cos x-\sin \frac{\pi }{3}\centerdot \frac{d}{dx}\sin x \\
 +
& =\cos \frac{\pi }{3}\centerdot \left( -\sin x \right)-\sin \frac{\pi }{3}\centerdot \cos x \\
 +
\end{align}</math>
 +
 
 +
 
 +
If we then use the addition formula in reverse, this gives
 +
 
 +
 
 +
<math>\begin{align}
 +
& {f}'\left( x \right)=-\left( \sin x\centerdot \cos \frac{\pi }{3}+\cos x\centerdot \sin \frac{\pi }{3} \right) \\
 +
& =-\sin \left( x+\frac{\pi }{3} \right) \\
 +
\end{align}</math>
 +
 
 +
NOTE: In the next section, we will go through differentiation rules which make it possible to differentiate the expression directly without rewriting in this way.

Version vom 11:49, 10. Okt. 2008

We can rewrite the function using a trigonometric addition formula:


\displaystyle f\left( x \right)=\cos \left( x+\frac{\pi }{3} \right)=\cos x\centerdot \cos \frac{\pi }{3}-\sin x\centerdot \sin \frac{\pi }{3}


If we now differentiate this expression, \displaystyle \cos \frac{\pi }{3} and \displaystyle \sin \frac{\pi }{3} are constants and we obtain


\displaystyle \begin{align} & {f}'\left( x \right)=\frac{d}{dx}\left( \cos x\centerdot \cos \frac{\pi }{3}-\sin x\centerdot \sin \frac{\pi }{3} \right) \\ & =\cos \frac{\pi }{3}\centerdot \frac{d}{dx}\cos x-\sin \frac{\pi }{3}\centerdot \frac{d}{dx}\sin x \\ & =\cos \frac{\pi }{3}\centerdot \left( -\sin x \right)-\sin \frac{\pi }{3}\centerdot \cos x \\ \end{align}


If we then use the addition formula in reverse, this gives


\displaystyle \begin{align} & {f}'\left( x \right)=-\left( \sin x\centerdot \cos \frac{\pi }{3}+\cos x\centerdot \sin \frac{\pi }{3} \right) \\ & =-\sin \left( x+\frac{\pi }{3} \right) \\ \end{align}

NOTE: In the next section, we will go through differentiation rules which make it possible to differentiate the expression directly without rewriting in this way.