Lösung 1.1:2e

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 1.1:2e moved to Solution 1.1:2e: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
With the help of the square rule, we can expand the quadratic as
-
<center> [[Image:1_1_2e.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
 
 +
<math>\begin{align}
 +
& f\left( x \right)=\left( x^{2}-1 \right)^{2}=\left( x^{2} \right)^{2}-2\centerdot x^{2}\centerdot 1+1^{2} \\
 +
& =x^{4}-2x^{2}+1 \\
 +
\end{align}</math>
 +
 
 +
 
 +
When the function is written in this form, it is easy to differentiate term by term:
 +
 
 +
 
 +
<math>\begin{align}
 +
& {f}'\left( x \right)=\frac{d}{dx}\left( x^{4}-2x^{2}+1 \right) \\
 +
& =\frac{d}{dx}x^{4}-2\frac{d}{dx}x^{2}+\frac{d}{dx}1 \\
 +
& =4\centerdot x^{-1}-2\centerdot 2x^{-1}+0 \\
 +
& =4x^{3}-4x=4x\left( x^{2}-1 \right) \\
 +
\end{align}</math>

Version vom 11:37, 10. Okt. 2008

With the help of the square rule, we can expand the quadratic as


\displaystyle \begin{align} & f\left( x \right)=\left( x^{2}-1 \right)^{2}=\left( x^{2} \right)^{2}-2\centerdot x^{2}\centerdot 1+1^{2} \\ & =x^{4}-2x^{2}+1 \\ \end{align}


When the function is written in this form, it is easy to differentiate term by term:


\displaystyle \begin{align} & {f}'\left( x \right)=\frac{d}{dx}\left( x^{4}-2x^{2}+1 \right) \\ & =\frac{d}{dx}x^{4}-2\frac{d}{dx}x^{2}+\frac{d}{dx}1 \\ & =4\centerdot x^{-1}-2\centerdot 2x^{-1}+0 \\ & =4x^{3}-4x=4x\left( x^{2}-1 \right) \\ \end{align}