Lösung 1.1:2c
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
			  			                                                      
		          
			| K  (Lösning 1.1:2c moved to Solution 1.1:2c: Robot: moved page) | |||
| Zeile 1: | Zeile 1: | ||
| - | {{ | + | We differentiate term by term: | 
| - | < | + | |
| - | { | + | |
| + | <math>\begin{align} | ||
| + | & {f}'\left( x \right)=\frac{d}{dx}\left( e^{x}-\ln x \right) \\  | ||
| + | & =\frac{d}{dx}e^{x}-\frac{d}{dx}\ln x=e^{x}-\frac{1}{x} \\  | ||
| + | \end{align}</math> | ||
| + | |||
| + | |||
| + | NOTE: because  | ||
| + | <math>\text{ln }x</math> | ||
| + | is not defined for  | ||
| + | <math>x\le 0</math> | ||
| + | we assume implicitly that | ||
| + | <math>x>0</math>. | ||
Version vom 11:22, 10. Okt. 2008
We differentiate term by term:
\displaystyle \begin{align}
& {f}'\left( x \right)=\frac{d}{dx}\left( e^{x}-\ln x \right) \\ 
& =\frac{d}{dx}e^{x}-\frac{d}{dx}\ln x=e^{x}-\frac{1}{x} \\ 
\end{align}
NOTE: because 
\displaystyle \text{ln }x
is not defined for 
\displaystyle x\le 0
we assume implicitly that
\displaystyle x>0.
 
		  