Lösung 3.1:2c
Aus Online Mathematik Brückenkurs 2
K (Lösning 3.1:2c moved to Solution 3.1:2c: Robot: moved page) |
|||
| Zeile 1: | Zeile 1: | ||
{{NAVCONTENT_START}} | {{NAVCONTENT_START}} | ||
| - | < | + | We start by expanding the quadratic in the numerator with the square rule: |
| + | |||
| + | |||
| + | <math>\begin{align}\frac{(2-i\sqrt{3})^2}{1+i\sqrt{3}}&= \frac{2^2-2\cdot 2\cdot i\sqrt{3}+(i\sqrt{3})^2}{1+i\sqrt{3}}\\ | ||
| + | &=\frac{4-4\sqrt{3}i-3}{1+i\sqrt{3}}\\ | ||
| + | &=\frac{1-4\sqrt{3}i}{1+i\sqrt{3}}\end{align}</math> | ||
| + | |||
| + | |||
| + | {{NAVCONTENT_STEP}} | ||
| + | Then, we multiply top and bottom by the complex conjugate of the numerator: | ||
| + | |||
| + | |||
| + | <math>\begin{align}\frac{1-4\sqrt{3}i}{1+i\sqrt{3}}&=\frac{(1-4\sqrt{3}i)(1-i\sqrt{3})}{(1+i\sqrt{3})(1-i\sqrt{3})}\\ | ||
| + | &=\frac{1\cdot 1-1\cdot i\sqrt{3}-1\cdot 4\sqrt{3}i+ 4\sqrt{3}i\cdot i \sqrt{3}}{1^2-(i\sqrt{3})^2}\\ | ||
| + | &=\frac{1-i\sqrt{3}-4\sqrt{3}i+4(\sqrt{3})^2i^2}{1+(\sqrt{3})^2)}\\ | ||
| + | &=\frac{1-(\sqrt{3}+4\sqrt{3})i-4\cdot 3}{1+3}\\ | ||
| + | &=\frac{1-12-(1+4)\sqrt{3}i}{4}\\ | ||
| + | &=-\frac{11}{4}-\frac{5\sqrt{3}}{4}i.\end{align}</math> | ||
| + | |||
{{NAVCONTENT_STOP}} | {{NAVCONTENT_STOP}} | ||
Version vom 10:07, 23. Sep. 2008
We start by expanding the quadratic in the numerator with the square rule:
\displaystyle \begin{align}\frac{(2-i\sqrt{3})^2}{1+i\sqrt{3}}&= \frac{2^2-2\cdot 2\cdot i\sqrt{3}+(i\sqrt{3})^2}{1+i\sqrt{3}}\\
&=\frac{4-4\sqrt{3}i-3}{1+i\sqrt{3}}\\
&=\frac{1-4\sqrt{3}i}{1+i\sqrt{3}}\end{align}
Then, we multiply top and bottom by the complex conjugate of the numerator:
\displaystyle \begin{align}\frac{1-4\sqrt{3}i}{1+i\sqrt{3}}&=\frac{(1-4\sqrt{3}i)(1-i\sqrt{3})}{(1+i\sqrt{3})(1-i\sqrt{3})}\\
&=\frac{1\cdot 1-1\cdot i\sqrt{3}-1\cdot 4\sqrt{3}i+ 4\sqrt{3}i\cdot i \sqrt{3}}{1^2-(i\sqrt{3})^2}\\
&=\frac{1-i\sqrt{3}-4\sqrt{3}i+4(\sqrt{3})^2i^2}{1+(\sqrt{3})^2)}\\
&=\frac{1-(\sqrt{3}+4\sqrt{3})i-4\cdot 3}{1+3}\\
&=\frac{1-12-(1+4)\sqrt{3}i}{4}\\
&=-\frac{11}{4}-\frac{5\sqrt{3}}{4}i.\end{align}
