Lösung 3.1:2a
Aus Online Mathematik Brückenkurs 2
K (Lösning 3.1:2a moved to Solution 3.1:2a: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
{{NAVCONTENT_START}} | {{NAVCONTENT_START}} | ||
- | < | + | A quotient of two complex numbers is calculated by multiplying the top and bottom of the fraction by the complex conjugate of the denominator: |
- | {{ | + | |
- | {{ | + | <math>\frac{3-2i}{1+i} = \frac{3-2i}{1+i}\frac{1-i}{1-i}.</math> |
- | < | + | {{NAVCONTENT_STEP}} |
+ | Then, the conjugate rule gives that the new denominator is a real number | ||
+ | |||
+ | <math>\begin{align}\frac{3-2i}{1+i}\frac{1-i}{1-i}&=\frac{(3-2i)(1-i)}{(1+i)(1-i)}\\ | ||
+ | &=\frac{(3-2i)(1-i)}{1^2-i^2}\\ | ||
+ | &=\frac{(3-2i)(1-i)}{1+1}\\ | ||
+ | &=\frac{(3-2i)(1-i)}{2}\end{align}</math> | ||
+ | {{NAVCONTENT_STEP}} | ||
+ | All that remains is to multiply together what is in the numerator: | ||
+ | |||
+ | |||
+ | <math>\begin{align}\frac{(3-2i)(1-i)}{2}&=\frac{3\cdot 1 -3\cdot i - 1\cdot 2i -2i\cdot(-i)}{2}\\ | ||
+ | &=\frac{3-3i-2i+2i^2}{2}\\ | ||
+ | &=\frac{3-(3+2)i+2(-1)}{2}\\ | ||
+ | &=\frac{1-5i}{2}\\ | ||
+ | &=\frac{1}{2}-\frac{5}{2}i.\end{align}</math> | ||
+ | |||
{{NAVCONTENT_STOP}} | {{NAVCONTENT_STOP}} |
Version vom 09:39, 23. Sep. 2008
A quotient of two complex numbers is calculated by multiplying the top and bottom of the fraction by the complex conjugate of the denominator:
\displaystyle \frac{3-2i}{1+i} = \frac{3-2i}{1+i}\frac{1-i}{1-i}.
Then, the conjugate rule gives that the new denominator is a real number
\displaystyle \begin{align}\frac{3-2i}{1+i}\frac{1-i}{1-i}&=\frac{(3-2i)(1-i)}{(1+i)(1-i)}\\ &=\frac{(3-2i)(1-i)}{1^2-i^2}\\ &=\frac{(3-2i)(1-i)}{1+1}\\ &=\frac{(3-2i)(1-i)}{2}\end{align}
All that remains is to multiply together what is in the numerator:
\displaystyle \begin{align}\frac{(3-2i)(1-i)}{2}&=\frac{3\cdot 1 -3\cdot i - 1\cdot 2i -2i\cdot(-i)}{2}\\
&=\frac{3-3i-2i+2i^2}{2}\\
&=\frac{3-(3+2)i+2(-1)}{2}\\
&=\frac{1-5i}{2}\\
&=\frac{1}{2}-\frac{5}{2}i.\end{align}