Lösung 3.1:1e
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K (Lösning 3.1:1e moved to Solution 3.1:1e: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
{{NAVCONTENT_START}} | {{NAVCONTENT_START}} | ||
- | < | + | A suitable first step can be to work out the square term, <math>(2-i)^2</math>, with the help of the square rule: |
+ | {{NAVCONTENT_STEP}} | ||
+ | <math>\begin{align}(2-i)^2&=2^2-2\cdot 2i + i^2=4-4i+i^2\\ | ||
+ | &=4-4i-1=3-4i\end{align}</math> | ||
+ | |||
+ | {{NAVCONTENT_STEP}} | ||
+ | After that, we calculate the remaining product: | ||
+ | {{NAVCONTENT_STEP}} | ||
+ | <math>\begin{align}(1+i)(3-4i)&=1\cdot3-1\cdot 4i +i \cdot 3 - i\cdot 4i\\ | ||
+ | &=3-4i+3i-4i^2\\ | ||
+ | &=3+(-4+3)i-4\cdot (-1)\\ | ||
+ | &=3-i+4\\ | ||
+ | &=7-i.\end{align}</math> | ||
{{NAVCONTENT_STOP}} | {{NAVCONTENT_STOP}} |
Version vom 11:57, 18. Sep. 2008
A suitable first step can be to work out the square term, \displaystyle (2-i)^2, with the help of the square rule:
\displaystyle \begin{align}(2-i)^2&=2^2-2\cdot 2i + i^2=4-4i+i^2\\ &=4-4i-1=3-4i\end{align}
After that, we calculate the remaining product:
\displaystyle \begin{align}(1+i)(3-4i)&=1\cdot3-1\cdot 4i +i \cdot 3 - i\cdot 4i\\ &=3-4i+3i-4i^2\\ &=3+(-4+3)i-4\cdot (-1)\\ &=3-i+4\\ &=7-i.\end{align}