Lösung 3.1:1d
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K (Lösning 3.1:1d moved to Solution 3.1:1d: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
{{NAVCONTENT_START}} | {{NAVCONTENT_START}} | ||
- | < | + | We expand the expression by multiplying each term in the first bracket with every term in the second bracket: |
+ | |||
+ | <math>\begin{align}(3-2i)(7+5i)&=3\cdot 7 + 3 \cdot 5i + \cdots\\ | ||
+ | &=3\cdot 7 + 3 \cdot 5i-2i\cdot 7 -2i \cdot 5i.\end{align}</math> | ||
+ | |||
+ | Then, we use that <math>i^2=-1</math> and write the real and imaginary parts together: | ||
+ | |||
+ | <math>\begin{align}(3-2i)(7+5i)&=21+15i-14i-10i^2\\ | ||
+ | &=21+15i-14i-10\cdot(-1)\\ | ||
+ | &=(21+10)+(15i-14i)\\ | ||
+ | &=31+1i\\ | ||
+ | &=31+i\end{align}</math> | ||
+ | |||
{{NAVCONTENT_STOP}} | {{NAVCONTENT_STOP}} |
Version vom 11:51, 18. Sep. 2008
We expand the expression by multiplying each term in the first bracket with every term in the second bracket:
\displaystyle \begin{align}(3-2i)(7+5i)&=3\cdot 7 + 3 \cdot 5i + \cdots\\ &=3\cdot 7 + 3 \cdot 5i-2i\cdot 7 -2i \cdot 5i.\end{align}
Then, we use that \displaystyle i^2=-1 and write the real and imaginary parts together:
\displaystyle \begin{align}(3-2i)(7+5i)&=21+15i-14i-10i^2\\ &=21+15i-14i-10\cdot(-1)\\ &=(21+10)+(15i-14i)\\ &=31+1i\\ &=31+i\end{align}