1.3 Übungen

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
Zeile 64: Zeile 64:
</div>{{#NAVCONTENT:Svar|Svar 1.3:4|Lösning |Lösning 1.3:4}}
</div>{{#NAVCONTENT:Svar|Svar 1.3:4|Lösning |Lösning 1.3:4}}
 +
 +
===Övning 1.3:5===
 +
<div class="ovning">
 +
En <math>30</math> cm bred plåt ska användas för att tillverka en ränna. Parallellt med plåtens långsidor viks kanterna upp enligt figuren. Hur stor ska vinkeln <math>\alpha</math> vara för att ränna ska rymma så mycket vatten som möjligt?
 +
Bild
 +
 +
</div>{{#NAVCONTENT:Svar|Svar 1.3:5|Lösning |Lösning 1.3:5}}

Version vom 10:01, 4. Apr. 2008

 

Vorlage:Mall:Ej vald flik Vorlage:Mall:Vald flik

 

Övning 1.3:1

Bestäm kritiska punkter, terasspunkter, lokala extrempunkter och globala extrempunkter för funktionerna som beskrivs i graferna nedan. Ange också de intervall där funktionen är strängt växande respektive strängt avtagande.

a) b)
c) d)

Övning 1.3:2

Bestäm kritiska punkter, terasspunkter, lokala extrempunkter och globala extrempunkter för funktionerna som beskrivs i graferna nedan. Ange också de intervall där funktionen är strängt växande respektive strängt avtagande.

a) \displaystyle f(x)= x^2 -2x+1 b) \displaystyle f(x)=2+3x-x^2
c) \displaystyle f(x)= 2x^3+3x^2-12x+1 d) \displaystyle f(x)=x^3-9x^2+30x-15

Övning 1.3:3

Bestäm kritiska punkter, terasspunkter, lokala extrempunkter och globala extrempunkter för funktionerna som beskrivs i graferna nedan. Ange också de intervall där funktionen är strängt växande respektive strängt avtagande.

a) \displaystyle f(x)=-x^4+8x^3-18x^2 b) \displaystyle f(x)=e^{-3x} +5x
c) \displaystyle f(x)= x\ln x -9 d) \displaystyle f(x)=\displaystyle\frac{1+x^2}{1+x^4}
e) \displaystyle f(x)=(x^2-x-1)e^x\displaystyle -3\le x\le 3

Övning 1.3:4

Var på kurvan \displaystyle y=1-x^2 i första kvadranten ska punkten \displaystyle P väljas för att rektangeln i figuren till höger ska ha maximal area?

Bild

Övning 1.3:5

En \displaystyle 30 cm bred plåt ska användas för att tillverka en ränna. Parallellt med plåtens långsidor viks kanterna upp enligt figuren. Hur stor ska vinkeln \displaystyle \alpha vara för att ränna ska rymma så mycket vatten som möjligt?

Bild