1.1 Übungen
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
			  			                                                      
		          
			| K  (Robot: Automated text replacement  (-{{Ej vald flik +{{Not selected tab)) | K  (Robot: Automated text replacement  (-{{Vald flik +{{Selected tab)) | ||
| Zeile 3: | Zeile 3: | ||
| | style="border-bottom:1px solid #000" width="5px" |   | | style="border-bottom:1px solid #000" width="5px" |   | ||
| {{Not selected tab|[[1.1 Introduction to derivatives|Theory]]}} | {{Not selected tab|[[1.1 Introduction to derivatives|Theory]]}} | ||
| - | {{ | + | {{Selected tab|[[1.1 Exercises|Exercises]]}} | 
| | style="border-bottom:1px solid #000"  width="100%"|   | | style="border-bottom:1px solid #000"  width="100%"|   | ||
| |} | |} | ||
Version vom 08:19, 17. Sep. 2008
| Theory | Exercises | 
Exercise 1.1:1
| The graph for \displaystyle f(x) is shown in the figure. 
 (Each square in the grid of the figure has width and height 1.) | 1.1 - Figur - Grafen till f(x) i övning 1.1:1 | 
Answer
Solution a
Solution b
Solution c
Exercise 1.1:2
Determine the derivative \displaystyle f^{\,\prime}(x) when
| a) | \displaystyle f(x) = x^2 -3x +1 | b) | \displaystyle f(x)=\cos x -\sin x | c) | \displaystyle f(x)= e^x-\ln x | 
| d) | \displaystyle f(x)=\sqrt{x} | e) | \displaystyle f(x) = (x^2-1)^2 | f) | \displaystyle f(x)= \cos (x+\pi/3) | 
Answer
Solution a
Solution b
Solution c
Solution d
Solution e
Solution f
Exercise 1.1:3
A small ball, that is released from a height of \displaystyle h=10m above the ground at time \displaystyle t=0, is at a height \displaystyle h(t)=10-\displaystyle\frac{9{,}82}{2}\,t^2 at time \displaystyle t (measured in seconds) What is the speed of the ball when it hits the grounds?
Answer
Solution
Exercise 1.1:4
Determine the equation for the tangent and normal to the curve \displaystyle y=x^2 at the point \displaystyle (1,1).
Answer
Solution
Exercise 1.1:5
Determine all the points on the curve \displaystyle y=-x^2 which have a tangent that goes through the point \displaystyle (1,1).
Answer
Solution
 
		   Laden...
  Laden...