2.2 Übungen

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Robot: Automated text replacement (-Svar +Answer))
K (Robot: Automated text replacement (-Lösning +Solution))
Zeile 20: Zeile 20:
|width="100%"| <math>\displaystyle \int x^2 e^{x^3} \, dx\quad</math> by using the substitution <math>u=x^3</math>.
|width="100%"| <math>\displaystyle \int x^2 e^{x^3} \, dx\quad</math> by using the substitution <math>u=x^3</math>.
|}
|}
-
</div>{{#NAVCONTENT:Answer|Answer 2.2:1|Solution a|Lösning 2.2:1a|Solution b|Lösning 2.2:1b|Solution c|Lösning 2.2:1c}}
+
</div>{{#NAVCONTENT:Answer|Answer 2.2:1|Solution a|Solution 2.2:1a|Solution b|Solution 2.2:1b|Solution c|Solution 2.2:1c}}
===Exercise 2.2:2===
===Exercise 2.2:2===
Zeile 36: Zeile 36:
|width="50%"| <math>\displaystyle\int_{0}^{1} \sqrt[\scriptstyle3]{1 - x}\, dx</math>
|width="50%"| <math>\displaystyle\int_{0}^{1} \sqrt[\scriptstyle3]{1 - x}\, dx</math>
|}
|}
-
</div>{{#NAVCONTENT:Answer|Answer 2.2:2|Solution a|Lösning 2.2:2a|Solution b|Lösning 2.2:2b|Solution c|Lösning 2.2:2c|Solution d|Lösning 2.2:2d}}
+
</div>{{#NAVCONTENT:Answer|Answer 2.2:2|Solution a|Solution 2.2:2a|Solution b|Solution 2.2:2b|Solution c|Solution 2.2:2c|Solution d|Solution 2.2:2d}}
===Exercise 2.2:3===
===Exercise 2.2:3===
Zeile 57: Zeile 57:
|width="50%"| <math>\displaystyle\int \displaystyle\frac{\sin \sqrt{x}}{\sqrt{x}}\, dx</math>
|width="50%"| <math>\displaystyle\int \displaystyle\frac{\sin \sqrt{x}}{\sqrt{x}}\, dx</math>
|}
|}
-
</div>{{#NAVCONTENT:Answer|Answer 2.2:3|Solution a|Lösning 2.2:3a|Solution b|Lösning 2.2:3b|Solution c|Lösning 2.2:3c|Solution d|Lösning 2.2:3d|Solution e|Lösning 2.2:3e|Solution f|Lösning 2.2:3f}}
+
</div>{{#NAVCONTENT:Answer|Answer 2.2:3|Solution a|Solution 2.2:3a|Solution b|Solution 2.2:3b|Solution c|Solution 2.2:3c|Solution d|Solution 2.2:3d|Solution e|Solution 2.2:3e|Solution f|Solution 2.2:3f}}
===Exercise 2.2:4===
===Exercise 2.2:4===
Zeile 75: Zeile 75:
|width="50%"| <math>\displaystyle\int \frac{x^2}{x^2 +1}\, dx</math>
|width="50%"| <math>\displaystyle\int \frac{x^2}{x^2 +1}\, dx</math>
|}
|}
-
</div>{{#NAVCONTENT:Answer|Answer 2.2:4|Solution a|Lösning 2.2:4a|Solution b|Lösning 2.2:4b|Solution c|Lösning 2.2:4c|Solution d|Lösning 2.2:4d}}
+
</div>{{#NAVCONTENT:Answer|Answer 2.2:4|Solution a|Solution 2.2:4a|Solution b|Solution 2.2:4b|Solution c|Solution 2.2:4c|Solution d|Solution 2.2:4d}}

Version vom 07:30, 17. Sep. 2008

 
  1. REDIRECT Template:Nicht gewählter Tab
  2. REDIRECT Template:Gewählter Tab
 

Exercise 2.2:1

Calculate the integrals

a) \displaystyle \displaystyle \int_{1}^{2} \displaystyle\frac{dx}{(3x-1)^4}\quad by using the substitution \displaystyle u=3x-1,
b) \displaystyle \displaystyle \int (x^2+3)^5x \, dx\quad by using the substitution \displaystyle u=x^2+3,
c) \displaystyle \displaystyle \int x^2 e^{x^3} \, dx\quad by using the substitution \displaystyle u=x^3.

Exercise 2.2:2

Calculate the integrals

a) \displaystyle \displaystyle\int_{0}^{\pi} \cos 5x\, dx b) \displaystyle \displaystyle\int_{0}^{1/2} e^{2x+3}\, dx
c) \displaystyle \displaystyle\int_{0}^{5} \sqrt{3x + 1} \, dx d) \displaystyle \displaystyle\int_{0}^{1} \sqrt[\scriptstyle3]{1 - x}\, dx

Exercise 2.2:3

Calculate the integrals

a) \displaystyle \displaystyle\int 2x \sin x^2\, dx b) \displaystyle \displaystyle\int \sin x \cos x\, dx
c) \displaystyle \displaystyle\int \displaystyle\frac{\ln x}{x}\, dx d) \displaystyle \displaystyle\int \displaystyle\frac{x+1}{x^2+2x+2}\, dx
e) \displaystyle \displaystyle\int \displaystyle\frac{3x}{x^2+1}\, dx f) \displaystyle \displaystyle\int \displaystyle\frac{\sin \sqrt{x}}{\sqrt{x}}\, dx

Exercise 2.2:4

Use the formula

\displaystyle \int \frac{dx}{x^2+1} = \arctan x + C

to calculate the integrals

a) \displaystyle \displaystyle\int \frac{dx}{x^2+4} b) \displaystyle \displaystyle\int \frac{dx}{(x-1)^2+3}
c) \displaystyle \displaystyle\int \frac{dx}{x^2+4x+8} d) \displaystyle \displaystyle\int \frac{x^2}{x^2 +1}\, dx