1.1 Übungen

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Robot: Automated text replacement (-Svar +Answer))
K (Robot: Automated text replacement (-Lösning +Solution))
Zeile 26: Zeile 26:
||{{:1.1 - Figur - Grafen till f(x) i övning 1.1:1}}
||{{:1.1 - Figur - Grafen till f(x) i övning 1.1:1}}
|}
|}
-
</div>{{#NAVCONTENT:Answer|Answer 1.1:1|Solution a|Lösning 1.1:1a|Solution b|Lösning 1.1:1b|Solution c|Lösning 1.1:1c}}
+
</div>{{#NAVCONTENT:Answer|Answer 1.1:1|Solution a|Solution 1.1:1a|Solution b|Solution 1.1:1b|Solution c|Solution 1.1:1c}}
===Exercise 1.1:2===
===Exercise 1.1:2===
Zeile 46: Zeile 46:
|width="33%"| <math>f(x)= \cos (x+\pi/3)</math>
|width="33%"| <math>f(x)= \cos (x+\pi/3)</math>
|}
|}
-
</div>{{#NAVCONTENT:Answer|Answer 1.1:2|Solution a|Lösning 1.1:2a|Solution b|Lösning 1.1:2b|Solution c|Lösning 1.1:2c|Solution d|Lösning 1.1:2d|Solution e|Lösning 1.1:2e|Solution f|Lösning 1.1:2f}}
+
</div>{{#NAVCONTENT:Answer|Answer 1.1:2|Solution a|Solution 1.1:2a|Solution b|Solution 1.1:2b|Solution c|Solution 1.1:2c|Solution d|Solution 1.1:2d|Solution e|Solution 1.1:2e|Solution f|Solution 1.1:2f}}
===Exercise 1.1:3===
===Exercise 1.1:3===
Zeile 52: Zeile 52:
A small ball, that is released from a height of <math>h=10</math>m above the ground at time <math>t=0</math>, is at a height <math>h(t)=10-\displaystyle\frac{9{,}82}{2}\,t^2</math> at time <math>t</math> (measured in seconds) What is the speed of the ball when it hits the grounds?
A small ball, that is released from a height of <math>h=10</math>m above the ground at time <math>t=0</math>, is at a height <math>h(t)=10-\displaystyle\frac{9{,}82}{2}\,t^2</math> at time <math>t</math> (measured in seconds) What is the speed of the ball when it hits the grounds?
-
</div>{{#NAVCONTENT:Answer|Answer 1.1:3|Solution |Lösning 1.1:3}}
+
</div>{{#NAVCONTENT:Answer|Answer 1.1:3|Solution |Solution 1.1:3}}
===Exercise 1.1:4===
===Exercise 1.1:4===
Zeile 58: Zeile 58:
Determine the equation for the tangent and normal to the curve <math>y=x^2</math> at the point <math>(1,1)</math>.
Determine the equation for the tangent and normal to the curve <math>y=x^2</math> at the point <math>(1,1)</math>.
-
</div>{{#NAVCONTENT:Answer|Answer 1.1:4|Solution |Lösning 1.1:4}}
+
</div>{{#NAVCONTENT:Answer|Answer 1.1:4|Solution |Solution 1.1:4}}
===Exercise 1.1:5===
===Exercise 1.1:5===
Zeile 64: Zeile 64:
Determine all the points on the curve <math>y=-x^2</math> which have a tangent that goes through the point <math>(1,1)</math>.
Determine all the points on the curve <math>y=-x^2</math> which have a tangent that goes through the point <math>(1,1)</math>.
-
</div>{{#NAVCONTENT:Answer|Answer 1.1:5|Solution |Lösning 1.1:5}}
+
</div>{{#NAVCONTENT:Answer|Answer 1.1:5|Solution |Solution 1.1:5}}

Version vom 07:29, 17. Sep. 2008

 
  1. REDIRECT Template:Nicht gewählter Tab
  2. REDIRECT Template:Gewählter Tab
 

Exercise 1.1:1

The graph for \displaystyle f(x) is shown in the figure.

a) What are the signs of \displaystyle f^{\,\prime}(-4) and \displaystyle f^{\,\prime}(1)?
b) For what values of \displaystyle x is \displaystyle f^{\,\prime}(x)=0?
c) In which interval(s) is \displaystyle f^{\,\prime}(x) negative?

(Each square in the grid of the figure has width and height 1.)

1.1 - Figur - Grafen till f(x) i övning 1.1:1

Exercise 1.1:2

Determine the derivative \displaystyle f^{\,\prime}(x) when

a) \displaystyle f(x) = x^2 -3x +1 b) \displaystyle f(x)=\cos x -\sin x c) \displaystyle f(x)= e^x-\ln x
d) \displaystyle f(x)=\sqrt{x} e) \displaystyle f(x) = (x^2-1)^2 f) \displaystyle f(x)= \cos (x+\pi/3)

Exercise 1.1:3

A small ball, that is released from a height of \displaystyle h=10m above the ground at time \displaystyle t=0, is at a height \displaystyle h(t)=10-\displaystyle\frac{9{,}82}{2}\,t^2 at time \displaystyle t (measured in seconds) What is the speed of the ball when it hits the grounds?

Exercise 1.1:4

Determine the equation for the tangent and normal to the curve \displaystyle y=x^2 at the point \displaystyle (1,1).

Exercise 1.1:5

Determine all the points on the curve \displaystyle y=-x^2 which have a tangent that goes through the point \displaystyle (1,1).