3.2 Übungen

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (3.2 Övningar moved to 3.2 Exercises: Robot: moved page)
K (Robot: Automated text replacement (-Övningar +Exercises))
Zeile 3: Zeile 3:
| style="border-bottom:1px solid #000" width="5px" |  
| style="border-bottom:1px solid #000" width="5px" |  
{{Ej vald flik|[[3.2 Polar form|Theory]]}}
{{Ej vald flik|[[3.2 Polar form|Theory]]}}
-
{{Vald flik|[[3.2 Övningar|Exercises]]}}
+
{{Vald flik|[[3.2 Exercises|Exercises]]}}
| style="border-bottom:1px solid #000" width="100%"|  
| style="border-bottom:1px solid #000" width="100%"|  
|}
|}

Version vom 13:50, 16. Sep. 2008

 
  1. REDIRECT Template:Nicht gewählter Tab
  2. REDIRECT Template:Gewählter Tab
 

Exercise 3.2:1

Given the complex numbers \displaystyle \,z=2+i\,, \displaystyle \,w=2+3i\, and \displaystyle \,u=-1-2i\,. Mark the following numbers on the complex plane:

a) \displaystyle z\, och \displaystyle \,w b) \displaystyle z+u\, och \displaystyle \,z-u
c) \displaystyle 2z+w d) \displaystyle z-\overline{w}+u

Exercise 3.2:2

Draw the following sets in the complex number plane

a) \displaystyle 0\le \mbox{Im}\, z \le 3 b) \displaystyle 0 \le \mbox{Re} \, z \le \mbox{Im}\, z \le 3
c) \displaystyle |z|=2 d) \displaystyle |z-1-i|=3
e) \displaystyle \mbox{Re}\, z = i + \bar z f) \displaystyle 2<|z-i|\le3

Exercise 3.2:3

The complex numbers \displaystyle \,1+i\,, \displaystyle \,3+2i\, and \displaystyle \,3i\, constitute three corners of a square in the complex number plane. Determine the square's fourth corner.

Exercise 3.2:4

Determine the magnitude of

a) \displaystyle 3+4i b) \displaystyle (2-i) + (5+3i)
c) \displaystyle (3-4i)(3+2i) d) \displaystyle \displaystyle\frac{3-4i}{3+2i}

Exercise 3.2:5

Determine the argument of

a) \displaystyle -10 b) \displaystyle -2+2i
c) \displaystyle (\sqrt{3} +i)(1-i) d) \displaystyle \displaystyle\frac{i}{1+i}

Exercise 3.2:6

Write the following numbers in polar form

a) \displaystyle 3 b) \displaystyle -11i
c) \displaystyle -4-4i d) \displaystyle \sqrt{10} + \sqrt{30}\,i
e) \displaystyle \displaystyle\frac{1+i\sqrt{3}}{1+i} f) \displaystyle \displaystyle\frac{(2+2i)(1+i\sqrt{3}\,)}{3i(\sqrt{12} -2i)}