1.1 Übungen

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Regenerate images and tabs)
Zeile 2: Zeile 2:
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
| style="border-bottom:1px solid #000" width="5px" |  
| style="border-bottom:1px solid #000" width="5px" |  
-
{{Ej vald flik|[[1.1 Inledning till derivata|Teori]]}}
+
{{Ej vald flik|[[1.1 Inledning till derivata|Theory]]}}
-
{{Vald flik|[[1.1 Övningar|Övningar]]}}
+
{{Vald flik|[[1.1 Övningar|exercises]]}}
| style="border-bottom:1px solid #000" width="100%"|  
| style="border-bottom:1px solid #000" width="100%"|  
|}
|}
-
===Övning 1.1:1===
+
===exercise 1.1:1===
<div class="ovning">
<div class="ovning">
{| width="100%"
{| width="100%"
| width="95%" |
| width="95%" |
-
Grafen till <math>f(x)</math> är ritad i figuren.
+
The graph for <math>f(x)</math> is shown in the figure.
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
| valign="top" |a)
| valign="top" |a)
-
| width="100%" | Vilket tecken har <math>f^{\,\prime}(-5)</math> respektive <math>f^{\,\prime}(1)</math>?
+
| width="100%" | What are the signs of <math>f^{\,\prime}(-5)</math> and <math>f^{\,\prime}(1)</math>?
|-
|-
| valign="top" |b)
| valign="top" |b)
-
|width="100%"| För vilka <math>x</math>-värden är <math>f^{\,\prime}(x)=0</math>?
+
|width="100%"| For what values of <math>x</math>-is <math>f^{\,\prime}(x)=0</math>?
|-
|-
| valign="top" |c)
| valign="top" |c)
-
|width="100%"| I vilket eller vilka intervall är <math>f^{\,\prime}(x)</math> negativ?
+
|width="100%"| In which interval(s) is<math>f^{\,\prime}(x)</math> negative?
|}
|}
-
(En ruta i figurens rutnät har längd och höjd 1.)
+
(Each square in the grid of the figure has width and height 1.)
| width="5%" |
| width="5%" |
||{{:1.1 - Figur - Grafen till f(x) i övning 1.1:1}}
||{{:1.1 - Figur - Grafen till f(x) i övning 1.1:1}}
Zeile 28: Zeile 28:
</div>{{#NAVCONTENT:Svar|Svar 1.1:1|Lösning a|Lösning 1.1:1a|Lösning b|Lösning 1.1:1b|Lösning c|Lösning 1.1:1c}}
</div>{{#NAVCONTENT:Svar|Svar 1.1:1|Lösning a|Lösning 1.1:1a|Lösning b|Lösning 1.1:1b|Lösning c|Lösning 1.1:1c}}
-
===Övning 1.1:2===
+
===exercise 1.1:2===
<div class="ovning">
<div class="ovning">
-
Bestäm <math>f^{\,\prime}(x)</math> om
+
Determine the derivative <math>f^{\,\prime}(x)</math> when
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Zeile 48: Zeile 48:
</div>{{#NAVCONTENT:Svar|Svar 1.1:2|Lösning a|Lösning 1.1:2a|Lösning b|Lösning 1.1:2b|Lösning c|Lösning 1.1:2c|Lösning d|Lösning 1.1:2d|Lösning e|Lösning 1.1:2e|Lösning f|Lösning 1.1:2f}}
</div>{{#NAVCONTENT:Svar|Svar 1.1:2|Lösning a|Lösning 1.1:2a|Lösning b|Lösning 1.1:2b|Lösning c|Lösning 1.1:2c|Lösning d|Lösning 1.1:2d|Lösning e|Lösning 1.1:2e|Lösning f|Lösning 1.1:2f}}
-
===Övning 1.1:3===
+
===exercise 1.1:3===
<div class="ovning">
<div class="ovning">
-
En liten boll som släpps från höjden <math>h=10</math>m ovanför marken vid tidpunkten <math>t=0</math>, har vid tiden <math>t</math> (mätt i sekunder) höjden <math>h(t)=10-\displaystyle\frac{9{,}82}{2}\,t^2</math>. Vilken fart har bollen när den slår i backen?
+
A small ball, that is released from a height of <math>h=10</math>m above the ground at time <math>t=0</math>, is at a height <math>h(t)=10-\displaystyle\frac{9{,}82}{2}\,t^2</math> at time <math>t</math> (measured in seconds) What is the speed of the ball when it hits the grounds?
</div>{{#NAVCONTENT:Svar|Svar 1.1:3|Lösning |Lösning 1.1:3}}
</div>{{#NAVCONTENT:Svar|Svar 1.1:3|Lösning |Lösning 1.1:3}}
-
===Övning 1.1:4===
+
===exercise 1.1:4===
<div class="ovning">
<div class="ovning">
-
Bestäm ekvationen för tangenten och normalen till kurvan <math>y=x^2</math> i punkten <math>(1,1)</math>.
+
Determine the equation for the tangent and normal to the curve <math>y=x^2</math> at the point <math>(1,1)</math>.
</div>{{#NAVCONTENT:Svar|Svar 1.1:4|Lösning |Lösning 1.1:4}}
</div>{{#NAVCONTENT:Svar|Svar 1.1:4|Lösning |Lösning 1.1:4}}
-
===Övning 1.1:5===
+
===exercise 1.1:5===
-
<div class="ovning">
+
<div exercise ="ovning">
-
Bestäm alla punkter på kurvan <math>y=-x^2</math> som har en tangent som går genom punkten <math>(1,1)</math>.
+
Determine all the points on the curve <math>y=-x^2</math> which have a tangent that goes through the point <math>(1,1)</math>.
</div>{{#NAVCONTENT:Svar|Svar 1.1:5|Lösning |Lösning 1.1:5}}
</div>{{#NAVCONTENT:Svar|Svar 1.1:5|Lösning |Lösning 1.1:5}}

Version vom 18:43, 3. Aug. 2008

 
  1. REDIRECT Template:Nicht gewählter Tab
  2. REDIRECT Template:Gewählter Tab
 

exercise 1.1:1

The graph for \displaystyle f(x) is shown in the figure.

a) What are the signs of \displaystyle f^{\,\prime}(-5) and \displaystyle f^{\,\prime}(1)?
b) For what values of \displaystyle x-is \displaystyle f^{\,\prime}(x)=0?
c) In which interval(s) is\displaystyle f^{\,\prime}(x) negative?

(Each square in the grid of the figure has width and height 1.)

1.1 - Figur - Grafen till f(x) i övning 1.1:1

exercise 1.1:2

Determine the derivative \displaystyle f^{\,\prime}(x) when

a) \displaystyle f(x) = x^2 -3x +1 b) \displaystyle f(x)=\cos x -\sin x c) \displaystyle f(x)= e^x-\ln x
d) \displaystyle f(x)=\sqrt{x} e) \displaystyle f(x) = (x^2-1)^2 f) \displaystyle f(x)= \cos (x+\pi/3)

exercise 1.1:3

A small ball, that is released from a height of \displaystyle h=10m above the ground at time \displaystyle t=0, is at a height \displaystyle h(t)=10-\displaystyle\frac{9{,}82}{2}\,t^2 at time \displaystyle t (measured in seconds) What is the speed of the ball when it hits the grounds?

exercise 1.1:4

Determine the equation for the tangent and normal to the curve \displaystyle y=x^2 at the point \displaystyle (1,1).

exercise 1.1:5

Determine all the points on the curve \displaystyle y=-x^2 which have a tangent that goes through the point \displaystyle (1,1).