1.1 Übungen

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Regenerate images and tabs)
Zeile 2: Zeile 2:
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
| style="border-bottom:1px solid #000" width="5px" |  
| style="border-bottom:1px solid #000" width="5px" |  
-
{{Mall:Ej vald flik|[[1.1 Inledning till derivata|Teori]]}}
+
{{Ej vald flik|[[1.1 Inledning till derivata|Teori]]}}
-
{{Mall:Vald flik|[[1.1 Övningar|Övningar]]}}
+
{{Vald flik|[[1.1 Övningar|Övningar]]}}
| style="border-bottom:1px solid #000" width="100%"|  
| style="border-bottom:1px solid #000" width="100%"|  
|}
|}

Version vom 17:08, 13. Jun. 2008

 
  1. REDIRECT Template:Nicht gewählter Tab
  2. REDIRECT Template:Gewählter Tab
 

Övning 1.1:1

Grafen till \displaystyle f(x) är ritad i figuren.

a) Vilket tecken har \displaystyle f^{\,\prime}(-5) respektive \displaystyle f^{\,\prime}(1)?
b) För vilka \displaystyle x-värden är \displaystyle f^{\,\prime}(x)=0?
c) I vilket eller vilka intervall är \displaystyle f^{\,\prime}(x) negativ?

(En ruta i figurens rutnät har längd och höjd 1.)

1.1 - Figur - Grafen till f(x) i övning 1.1:1

Övning 1.1:2

Bestäm \displaystyle f^{\,\prime}(x) om

a) \displaystyle f(x) = x^2 -3x +1 b) \displaystyle f(x)=\cos x -\sin x c) \displaystyle f(x)= e^x-\ln x
d) \displaystyle f(x)=\sqrt{x} e) \displaystyle f(x) = (x^2-1)^2 f) \displaystyle f(x)= \cos (x+\pi/3)

Övning 1.1:3

En liten boll som släpps från höjden \displaystyle h=10m ovanför marken vid tidpunkten \displaystyle t=0, har vid tiden \displaystyle t (mätt i sekunder) höjden \displaystyle h(t)=10-\displaystyle\frac{9{,}82}{2}\,t^2. Vilken fart har bollen när den slår i backen?

Övning 1.1:4

Bestäm ekvationen för tangenten och normalen till kurvan \displaystyle y=x^2 i punkten \displaystyle (1,1).

Övning 1.1:5

Bestäm alla punkter på kurvan \displaystyle y=-x^2 som har en tangent som går genom punkten \displaystyle (1,1).