3.4 Übungen

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Regenerate images and tabs)
Zeile 2: Zeile 2:
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
| style="border-bottom:1px solid #000" width="5px" |  
| style="border-bottom:1px solid #000" width="5px" |  
-
{{Mall:Ej vald flik|[[3.4 Komplexa polynom|Teori]]}}
+
{{Ej vald flik|[[3.4 Komplexa polynom|Teori]]}}
-
{{Mall:Vald flik|[[3.4 Övningar|Övningar]]}}
+
{{Vald flik|[[3.4 Övningar|Övningar]]}}
| style="border-bottom:1px solid #000" width="100%"|  
| style="border-bottom:1px solid #000" width="100%"|  
|}
|}

Version vom 17:13, 13. Jun. 2008

 
  1. REDIRECT Template:Nicht gewählter Tab
  2. REDIRECT Template:Gewählter Tab
 

Övning 3.4:1

Utför följande polynomdivisioner (alla går inte jämnt ut)

a) \displaystyle \displaystyle\frac{x^2-1}{x-1} b) \displaystyle \displaystyle\frac{x^2}{x+1} c) \displaystyle \displaystyle \frac{x^3+a^3}{x+a}
d) \displaystyle \displaystyle\frac{x^3 +x+2}{x+1} e) \displaystyle \displaystyle \frac{x^3+2x^2+1}{x^2+3x+1}

Övning 3.4:2

Ekvationen \displaystyle \,z^3-3z^2+4z-2=0\, har roten \displaystyle \,z=1\,. Bestäm övriga rötter.

Övning 3.4:3

Ekvationen \displaystyle \,z^4+2z^3+6z^2 +8z +8 =0\, har rötterna \displaystyle \,z=2i\, och \displaystyle \,z=-1-i\,. Lös ekvationen.

Övning 3.4:4

Bestäm två reella tal \displaystyle \,a\, och \displaystyle \,b\, så att ekvationen \displaystyle \ z^3+az+b=0\ har roten \displaystyle \,z=1-2i\,. Lös sedan ekvationen.

Övning 3.4:5

Bestäm \displaystyle \,a\, och \displaystyle \,b\, så att ekvationen \displaystyle \ z^4-6z^2+az+b=0\ har en trippelrot. Lös sedan ekvationen.

Övning 3.4:6

Ekvationen \displaystyle \ z^4+3z^3+z^2+18z-30=0\ har en rent imaginär rot. Bestäm alla rötter.

Övning 3.4:7

Bestäm polynom som har följande nollställen

a) \displaystyle 1\,, \displaystyle \,2\, och \displaystyle \,4 b) \displaystyle -1+ i\, och \displaystyle \,-1-i