3.4 Übungen
Aus Online Mathematik Brückenkurs 2
K (Regenerate images and tabs) |
|||
Zeile 2: | Zeile 2: | ||
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | {| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | ||
| style="border-bottom:1px solid #000" width="5px" | | | style="border-bottom:1px solid #000" width="5px" | | ||
- | {{ | + | {{Ej vald flik|[[3.4 Komplexa polynom|Teori]]}} |
- | {{ | + | {{Vald flik|[[3.4 Övningar|Övningar]]}} |
| style="border-bottom:1px solid #000" width="100%"| | | style="border-bottom:1px solid #000" width="100%"| | ||
|} | |} |
Version vom 17:13, 13. Jun. 2008
|
Övning 3.4:1
Utför följande polynomdivisioner (alla går inte jämnt ut)
a) | \displaystyle \displaystyle\frac{x^2-1}{x-1} | b) | \displaystyle \displaystyle\frac{x^2}{x+1} | c) | \displaystyle \displaystyle \frac{x^3+a^3}{x+a} |
d) | \displaystyle \displaystyle\frac{x^3 +x+2}{x+1} | e) | \displaystyle \displaystyle \frac{x^3+2x^2+1}{x^2+3x+1} |
Övning 3.4:2
Ekvationen \displaystyle \,z^3-3z^2+4z-2=0\, har roten \displaystyle \,z=1\,. Bestäm övriga rötter.
Övning 3.4:3
Ekvationen \displaystyle \,z^4+2z^3+6z^2 +8z +8 =0\, har rötterna \displaystyle \,z=2i\, och \displaystyle \,z=-1-i\,. Lös ekvationen.
Övning 3.4:4
Bestäm två reella tal \displaystyle \,a\, och \displaystyle \,b\, så att ekvationen \displaystyle \ z^3+az+b=0\ har roten \displaystyle \,z=1-2i\,. Lös sedan ekvationen.
Övning 3.4:5
Bestäm \displaystyle \,a\, och \displaystyle \,b\, så att ekvationen \displaystyle \ z^4-6z^2+az+b=0\ har en trippelrot. Lös sedan ekvationen.
Övning 3.4:6
Ekvationen \displaystyle \ z^4+3z^3+z^2+18z-30=0\ har en rent imaginär rot. Bestäm alla rötter.
Övning 3.4:7
Bestäm polynom som har följande nollställen
a) | \displaystyle 1\,, \displaystyle \,2\, och \displaystyle \,4 | b) | \displaystyle -1+ i\, och \displaystyle \,-1-i |