ZusatzStoffTUB
Aus Online Mathematik Brückenkurs 2
Zeile 81: | Zeile 81: | ||
<math>\begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} \times \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix}= \begin{pmatrix} v_2w_3-v_3w_2 \\ v_3w_1-v_1w_3 \\ v_1w_2-v_2w_1 \end{pmatrix}</math>. | <math>\begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} \times \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix}= \begin{pmatrix} v_2w_3-v_3w_2 \\ v_3w_1-v_1w_3 \\ v_1w_2-v_2w_1 \end{pmatrix}</math>. | ||
- | '''Eigenschaften von <math>\vec{u}=\vec{v} \times \vec{w}''' | + | '''Eigenschaften von <math>\vec{u}=\vec{v} \times \vec{w}</math>''' |
<ol> | <ol> | ||
<li> | <li> | ||
<math>\vec{u} \perp \vec{v} , \vec{u} \perp \vec{w}</math> | <math>\vec{u} \perp \vec{v} , \vec{u} \perp \vec{w}</math> | ||
+ | </li> | ||
+ | <li> | ||
+ | <math>||\vec{u}||= ||\vec{v}|| \cdot ||\vec{w} \cdot \sin{\angle (\vec{v} ,\vec{w}}</math> | ||
+ | </li> | ||
+ | <li> | ||
+ | <math> \vec{v} \text{(Daumen)}, \vec{w} \text{(Zeigefinger) und } \vec{u} \text{(Mittelfinger)}</math> sind Rechtssystem (s.o.) | ||
+ | </li> | ||
+ | <li> | ||
+ | <math>\vec{v} \times \vec{v}=\vec{0}</math> | ||
+ | </li> | ||
+ | <li> | ||
+ | <math>\vec{w} \times \vec{v} = - \vec{v} \times \vec{w} </math> | ||
+ | </li> | ||
+ | </ol> | ||
+ | |||
+ | '''Bemerkungen und Beweise''' | ||
+ | |||
+ | zu 1. | ||
+ | |||
+ | <math> <\vec{u}, \vec{v}>= <\begin{pmatrix} v_2w_3-v_3w_2 \\ v_3w_1-v_1w_3 \\ v_1w_2-v_2w_1 \end{pmatrix}, \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}>= v_1w_3v_2-v_1w_2v_3+v_3w_1v_2-v_1w_3v_2+v_1w_2v_3-v_2w_1v_3</math> | ||
+ | <math>=v_1w_3v_2-v_1w_3v_2-v_1w_2v_3+v_1w_2v_3+v_3w_1v_2-v_2w_1v_3=0</math> | ||
+ | |||
+ | <math> <\vec{u}, \vec{w}></math> ebenso | ||
+ | |||
+ | zu 2. | ||
+ | |||
+ | <math>||\vec{u}||= ||\vec{v}|| \cdot ||\vec{w} \cdot \sin{\angle (\vec{v} ,\vec{w}}</math> ist der Flaecheninhalt des von <math>\vec{v}, \vec{w}</math> aufgespannten Parallelogramms. | ||
+ | <math>h = ||\vec{w} || \sin{\angle (\vec{v} ,\vec{w}}</math> | ||
+ | BILD | ||
+ | |||
+ | zu 3. | ||
+ | sparen | ||
+ | |||
+ | |||
+ | zu 4. | ||
+ | aus (2) oder Def | ||
+ | |||
+ | zu 5. | ||
+ | Def. | ||
+ | Bild | ||
+ | |||
+ | |||
+ | Beispiel fuer Kreuzprodukt | ||
+ | |||
+ | BILD | ||
+ | Ladung q mit Geschw. <math> \vec{v}</math> in Feld <math> \vec{B}</math> | ||
+ | <math> \vec{F}= q \vec{v} \times \vec{B}</math> | ||
+ | |||
+ | |||
+ | == Spatprodukt == | ||
+ | Fuer <math> \vec{a} , \vec{b} , \vec{c} \in R ^3 </math> setze | ||
+ | |||
+ | <math>\begin{bmatrix} \vec{a}, \vec{b} , \vec{c} \end{bmatrix} = <(\vec{a} \times \vec{b}),\vec{c}></math>. Ergebnis: Skalar | ||
+ | <math>||\vec{} \times \vec{} || ||\vec{} || \cos{(\vec{a} \times \vec{b , \vec{c}}}</math> | ||
+ | <math>||\vec{} || ||\vec{} || ||\vec{} || \cos{(\vec{a} \times \vec{b , \vec{c}}} \sin{\vec{a} , \vec{b}}</math> | ||
+ | <math>\begin{bmatrix} \vec{a}, \vec{b} , \vec{c} \end{bmatrix}</math> ist das Volumen von <math>\vec{a} , \vec{b} , \vec{c}</math> aufgespannten Spats. | ||
+ | |||
+ | Bild | ||
+ | |||
+ | == Funktionen == | ||
+ | |||
+ | bisher: <math> f : R \rightarrow R</math> | ||
+ | <math> x \mapsto f(x)</math> | ||
+ | <math>Wertebereich \rightarrow Bildbereich</math> | ||
+ | ("<math>\rightarrow </math>" "ist Funktion von ... nach ...") | ||
+ | ("<math>\mapsto </math>" bildet Element x ab auf f(x)) | ||
+ | |||
+ | nuetzlich: | ||
+ | groessere Werte-/Bildbereiche. | ||
+ | |||
+ | Beispiele | ||
+ | Raumkurven (als Funktion der Zeit) | ||
+ | <ol> |
Version vom 12:21, 2. Okt. 2009
Zusätzlicher Stoff im Präsenzbrückenkurs der TU Berlin
Inhalt:
- erster Punkt
- zweiter Punkt
- dritter Punkt
Lernziele
Nach diesem Abschnitt sollten Sie folgendes können:
- erstes Ziel
- zweites Ziel
Inhaltsverzeichnis |
3.1. Geometrie im Raum
A - Vektoren des \displaystyle R^3
BESCHREIBUNG
C - (Standart-)Skalarprodukt im \displaystyle R^3 ("Punktprodukt")
Fuer \displaystyle \vec{v}= \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} und \displaystyle \vec{w}= \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix}:
\displaystyle <\vec{v},\vec{w}>:= v_1w_1+ v_2w_2+v_3w_3=\vec{v} \cdot \vec{w}
\displaystyle <\vec{v},\vec{w}> \in R
(analog im \displaystyle R^2
\displaystyle <\vec{v},\vec{w}>= <\begin{pmatrix} v_1 \\ v_2 \end{pmatrix},\begin{pmatrix} w_1 \\ w_2 \end{pmatrix}>= v_1w_1+ v_2w_2)
Achtung: Das Skalarprodukt nicht mit der Skalaren Multiplikation verwechseln. Bei dem Skalarprodukt werden zwei Vektoren multipliziert, wobie man ein Skalar (eine reelle Zahl) erhaelt, waehrend man bei der skalaren Multiplikation einen Vekotor mit einem Skalar multipliziert und einen Vektor erhaehlt.
Wichtige Eigenschaften des Skalarprodukts
Verknuefung von Winkel und Laenge ueber
\displaystyle <\vec{v},\vec{w}>=||\vec{v}|| \cdot ||\vec{w}|| \cdot \cos{\angle(\vec{v},\vec{w})}
Begruendung: Betrachte die Vektoren \displaystyle \vec{v},\vec{w}
BILD
\displaystyle \vec{w}= \begin{pmatrix} ||\vec{w} || \\ 0 \end{pmatrix} \displaystyle \vec{v}= \begin{pmatrix} a \\ b \end{pmatrix} \displaystyle ||\vec{v}||= \sqrt{a^2+b^2} \displaystyle \cos{\gamma}= \dfrac{Ankathete}{Hypothenuse}=\dfrac{a}{||\vec{v}||}=\dfrac{a}{\sqrt{a^2+b^2}} \Leftrightarrow a=||\vec{v}|| \cdot \cos{\gamma} <bar>Dann ist \displaystyle <\vec{v},\vec{w}>=<\begin{pmatrix} ||\vec{w} || \\ 0 \end{pmatrix},\begin{pmatrix} a \\ b \end{pmatrix}>=<\begin{pmatrix} ||\vec{w} || \\ 0 \end{pmatrix},\begin{pmatrix} ||\vec{v}|| \cdot \cos{\gamma} \\ b \end{pmatrix}>= ||\vec{w} || \cdot ||\vec{v}|| \cdot \cos{\gamma}+ 0 \cdot b=||\vec{w} || \cdot ||\vec{v}|| \cdot \cos{\gamma}
Die Begruendung ist fuer alle Vektoren gueltig, da man die Vektoren so drehen kann, dass \displaystyle \vec{w} parallel zur x-Achse ist und \displaystyle \vec{v} in der x-y-Ebene. Dabei bleibt das Skalarprodukt und die Winkel unveraendert. In der Linearen Algebra fuer Ingenieure wird dieses auch nochmal genauer erklaert.
Folgerungen
Fuer \displaystyle \vec{v}, \vec{w} \ne 0 ist \displaystyle <\vec{v}, \vec{w}>=0 \Leftrightarrow \cos{\angle \vec{v}, \vec{w}}=0\displaystyle \Leftrightarrow \vec{v} \perp \vec{w} "\displaystyle \vec{v} orthogonal zu \displaystyle \vec{w}"
Fuer \displaystyle \vec{v}= \vec{w} ist \displaystyle <\vec{v},\vec{v}>=||\vec{v}|| \cdot ||\vec{v}|| \cdot \cos{0}=||\vec{v}||^2 also \displaystyle ||\vec{v}||= \sqrt{v_1^2+v_2^2+v_3^2} (vgl. \displaystyle ||\vec{v}||= \sqrt{v_1^2+v_2^2} in \displaystyle R^2, Pytagoras 3D)
Skalarprodukt: - bei gleicher Groesse Laenge - Winkelgroessen - Wissen wann Winkel senkrecht
Beispiel \displaystyle \cos{\angle(\vec{v},\vec{w})}=\dfrac{<\vec{v},\vec{w}>}{||\vec{v}|| ||\vec{w}||} \displaystyle \vec{a}=\begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix} ,\vec{b}=\begin{pmatrix} 3 \\ 1 \\ 4 \end{pmatrix} \displaystyle \cos{\angle(\vec{a},\vec{b})}= \dfrac{2\cdot 3 + (-3)\cdot 1+ 1\cdot 4}{\sqrt{4+9+1} \sqrt{9+1+16}}= \dfrac{7}{\sqrt{14} \sqrt{26}} \approx 0,3669 \displaystyle \Rightarrow Winkel zwischen a,b : \displaystyle \angle(a,b) \approx 68,48^{\circ}
Das Kreuzprodukt ("Vektorprodukt")
Im \displaystyle R^3 definiere \displaystyle \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} \times \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix}= \begin{pmatrix} v_2w_3-v_3w_2 \\ v_3w_1-v_1w_3 \\ v_1w_2-v_2w_1 \end{pmatrix}.
Eigenschaften von \displaystyle \vec{u}=\vec{v} \times \vec{w}
- \displaystyle \vec{u} \perp \vec{v} , \vec{u} \perp \vec{w}
- \displaystyle ||\vec{u}||= ||\vec{v}|| \cdot ||\vec{w} \cdot \sin{\angle (\vec{v} ,\vec{w}}
- \displaystyle \vec{v} \text{(Daumen)}, \vec{w} \text{(Zeigefinger) und } \vec{u} \text{(Mittelfinger)} sind Rechtssystem (s.o.)
- \displaystyle \vec{v} \times \vec{v}=\vec{0}
- \displaystyle \vec{w} \times \vec{v} = - \vec{v} \times \vec{w}
Bemerkungen und Beweise
zu 1.
\displaystyle <\vec{u}, \vec{v}>= <\begin{pmatrix} v_2w_3-v_3w_2 \\ v_3w_1-v_1w_3 \\ v_1w_2-v_2w_1 \end{pmatrix}, \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}>= v_1w_3v_2-v_1w_2v_3+v_3w_1v_2-v_1w_3v_2+v_1w_2v_3-v_2w_1v_3 \displaystyle =v_1w_3v_2-v_1w_3v_2-v_1w_2v_3+v_1w_2v_3+v_3w_1v_2-v_2w_1v_3=0
\displaystyle <\vec{u}, \vec{w}> ebenso
zu 2.
\displaystyle ||\vec{u}||= ||\vec{v}|| \cdot ||\vec{w} \cdot \sin{\angle (\vec{v} ,\vec{w}} ist der Flaecheninhalt des von \displaystyle \vec{v}, \vec{w} aufgespannten Parallelogramms. \displaystyle h = ||\vec{w} || \sin{\angle (\vec{v} ,\vec{w}}
BILD
zu 3. sparen
zu 4.
aus (2) oder Def
zu 5. Def.
Bild
Beispiel fuer Kreuzprodukt
BILD
Ladung q mit Geschw. \displaystyle \vec{v} in Feld \displaystyle \vec{B} \displaystyle \vec{F}= q \vec{v} \times \vec{B}
Spatprodukt
Fuer \displaystyle \vec{a} , \vec{b} , \vec{c} \in R ^3 setze
\displaystyle \begin{bmatrix} \vec{a}, \vec{b} , \vec{c} \end{bmatrix} = <(\vec{a} \times \vec{b}),\vec{c}>. Ergebnis: Skalar \displaystyle ||\vec{} \times \vec{} || ||\vec{} || \cos{(\vec{a} \times \vec{b , \vec{c}}} \displaystyle ||\vec{} || ||\vec{} || ||\vec{} || \cos{(\vec{a} \times \vec{b , \vec{c}}} \sin{\vec{a} , \vec{b}} \displaystyle \begin{bmatrix} \vec{a}, \vec{b} , \vec{c} \end{bmatrix} ist das Volumen von \displaystyle \vec{a} , \vec{b} , \vec{c} aufgespannten Spats.
Bild
Funktionen
bisher: \displaystyle f : R \rightarrow R \displaystyle x \mapsto f(x) \displaystyle Wertebereich \rightarrow Bildbereich ("\displaystyle \rightarrow " "ist Funktion von ... nach ...") ("\displaystyle \mapsto " bildet Element x ab auf f(x))
nuetzlich: groessere Werte-/Bildbereiche.
Beispiele Raumkurven (als Funktion der Zeit)