Lösung 2.2:4a

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
Zeile 1: Zeile 1:
-
Unseres Integral unterscheidet sich nur von dem im Hinweis, indem der Nenner <math>x^2+4</math> statt <math>x^2+1</math> ist. Ziehen wir aber den Faktor 4 aus dem Nenner heraus, erhalten wir
+
Unsere Integral unterscheidet sich nur von dem im Hinweis, indem der Nenner <math>x^2+4</math> statt <math>x^2+1</math> ist. Ziehen wir aber den Faktor 4 aus dem Nenner heraus, erhalten wir
{{Abgesetzte Formel||<math>\int \frac{dx}{x^2+4} = \int \frac{dx}{4\bigl(\tfrac{1}{4}x^2+1\bigr)} = \frac{1}{4}\int \frac{dx}{\tfrac{1}{4}x^2+1}\,\textrm{,}</math>}}
{{Abgesetzte Formel||<math>\int \frac{dx}{x^2+4} = \int \frac{dx}{4\bigl(\tfrac{1}{4}x^2+1\bigr)} = \frac{1}{4}\int \frac{dx}{\tfrac{1}{4}x^2+1}\,\textrm{,}</math>}}

Version vom 12:48, 27. Aug. 2009

Unsere Integral unterscheidet sich nur von dem im Hinweis, indem der Nenner \displaystyle x^2+4 statt \displaystyle x^2+1 ist. Ziehen wir aber den Faktor 4 aus dem Nenner heraus, erhalten wir

\displaystyle \int \frac{dx}{x^2+4} = \int \frac{dx}{4\bigl(\tfrac{1}{4}x^2+1\bigr)} = \frac{1}{4}\int \frac{dx}{\tfrac{1}{4}x^2+1}\,\textrm{,}

erhalten wir einen ähnlicheren Ausdruck. Durch die Substitution \displaystyle u=\tfrac{1}{2}x erhalten wir

\displaystyle \begin{align}

\frac{1}{4}\int \frac{dx}{\tfrac{1}{4}x^2+1} &= \frac{1}{4}\int \frac{dx}{(x/2)^2+1} = \left\{\begin{align} u &= x/2\\[5pt] du &= \tfrac{1}{2}\,dx \end{align}\right\}\\[5pt] &= \frac{1}{4}\int \frac{2\,du}{u^2+1} = \frac{1}{2}\int\frac{du}{u^2+1}\\[5pt] &= \frac{1}{2}\arctan u + C = \frac{1}{2}\arctan \frac{x}{2} + C\,\textrm{.} \end{align}