Lösung 1.2:3a
Aus Online Mathematik Brückenkurs 2
Zeile 1: | Zeile 1: | ||
- | Als | + | Als ersten Schritt berechnen wir die Ableitung der äußeren Logarithmusfunktion. |
- | {{Abgesetzte Formel||<math>\frac{d}{dx}\,\ln\bigl( \bbox[#FFEEAA;,1.5pt]{\sqrt{x}+\sqrt{x+1}} \bigr) = {}\rlap{\frac{1}{\bbox[#FFEEAA;,1.5pt]{\sqrt{x}+\sqrt{x+1}}}\cdot \bigl( \bbox[#FFEEAA;,1.5pt]{\sqrt{x}+\sqrt{x+1}} \bigr)'\,\textrm{ | + | {{Abgesetzte Formel||<math>\frac{d}{dx}\,\ln\bigl( \bbox[#FFEEAA;,1.5pt]{\sqrt{x}+\sqrt{x+1}} \bigr) = {}\rlap{\frac{1}{\bbox[#FFEEAA;,1.5pt]{\sqrt{x}+\sqrt{x+1}}}\cdot \bigl( \bbox[#FFEEAA;,1.5pt]{\sqrt{x}+\sqrt{x+1}} \bigr)'\,\textrm{}}\phantom{\frac{1}{\sqrt{x}+\sqrt{x+1}}\cdot \Bigl[\frac{1}{2\sqrt{x}}+\frac{1}{2\sqrt{x+1}}\cdot (x+1)'\Bigr]}</math>}} |
- | Wir leiten den Ausdruck <math>\sqrt{x}+\sqrt{x+1}</math> Term für Term ab | + | Wir leiten den Ausdruck <math>\sqrt{x}+\sqrt{x+1}</math> Term für Term ab und erhalten |
- | {{Abgesetzte Formel||<math>\phantom{\frac{d}{dx}\,\ln\bigl( \bbox[#FFEEAA;,1.5pt]{\sqrt{x}+\sqrt{x+1}} \bigr)}{} = {}\rlap{\frac{1}{\sqrt{x}+\sqrt{x+1}}\cdot \bigl[ (\sqrt{x})' + (\sqrt{x+1})'\bigr]}\phantom{\frac{1}{\sqrt{x}+\sqrt{x+1}}\cdot \Bigl[\frac{1}{2\sqrt{x}}+\frac{1}{2\sqrt{x+1}}\cdot (x+1)'\Bigr]}</math>}} | + | {{Abgesetzte Formel||<math>\phantom{\frac{d}{dx}\,\ln\bigl( \bbox[#FFEEAA;,1.5pt]{\sqrt{x}+\sqrt{x+1}} \bigr)}{} = {}\rlap{\frac{1}{\sqrt{x}+\sqrt{x+1}}\cdot \bigl[ (\sqrt{x})' + (\sqrt{x+1})'\bigr]\textrm{.}}\phantom{\frac{1}{\sqrt{x}+\sqrt{x+1}}\cdot \Bigl[\frac{1}{2\sqrt{x}}+\frac{1}{2\sqrt{x+1}}\cdot (x+1)'\Bigr]}</math>}} |
- | Danach leiten wir die Funktionen <math>\sqrt{x}</math> und <math>\sqrt{x+1}</math> direkt ab | + | Danach leiten wir die Funktionen <math>\sqrt{x}</math> und <math>\sqrt{x+1}</math> direkt ab. |
{{Abgesetzte Formel||<math>\begin{align} | {{Abgesetzte Formel||<math>\begin{align} | ||
\phantom{\frac{d}{dx}\,\ln\bigl( \bbox[#FFEEAA;,1.5pt]{\sqrt{x}+\sqrt{x+1}} \bigr)}{} | \phantom{\frac{d}{dx}\,\ln\bigl( \bbox[#FFEEAA;,1.5pt]{\sqrt{x}+\sqrt{x+1}} \bigr)}{} | ||
&= \frac{1}{\sqrt{x}+\sqrt{x+1}}\cdot \Bigl[\frac{1}{2\sqrt{x}}+\frac{1}{2\sqrt{x+1}}\cdot (x+1)'\Bigr]\\[5pt] | &= \frac{1}{\sqrt{x}+\sqrt{x+1}}\cdot \Bigl[\frac{1}{2\sqrt{x}}+\frac{1}{2\sqrt{x+1}}\cdot (x+1)'\Bigr]\\[5pt] | ||
- | &= \frac{1}{\sqrt{x}+\sqrt{x+1}}\cdot \Bigl[\frac{1}{2\sqrt{x}}+\frac{1}{2\sqrt{x+1}}\cdot 1\Bigr]\,\textrm{ | + | &= \frac{1}{\sqrt{x}+\sqrt{x+1}}\cdot \Bigl[\frac{1}{2\sqrt{x}}+\frac{1}{2\sqrt{x+1}}\cdot 1\Bigr]\,\textrm{} |
\end{align}</math>}} | \end{align}</math>}} | ||
Zeile 18: | Zeile 18: | ||
{{Abgesetzte Formel||<math>\phantom{\frac{d}{dx}\,\ln\bigl( \bbox[#FFEEAA;,1.5pt]{\sqrt{x}+\sqrt{x+1}} \bigr)}{} | {{Abgesetzte Formel||<math>\phantom{\frac{d}{dx}\,\ln\bigl( \bbox[#FFEEAA;,1.5pt]{\sqrt{x}+\sqrt{x+1}} \bigr)}{} | ||
- | = {}\rlap{\frac{1}{\sqrt{x}+\sqrt{x+1}}\cdot \Bigl[\frac{\sqrt{x+1}+\sqrt{x}}{2\sqrt{x}\sqrt{x+1}} \Bigr]\, | + | = {}\rlap{\frac{1}{\sqrt{x}+\sqrt{x+1}}\cdot \Bigl[\frac{\sqrt{x+1}+\sqrt{x}}{2\sqrt{x}\sqrt{x+1}} \Bigr]\,.}\phantom{\frac{1}{\sqrt{x}+\sqrt{x+1}}\cdot \Bigl[\frac{1}{2\sqrt{x}}+\frac{1}{2\sqrt{x+1}}\cdot (x+1)'\Bigr]}</math>}} |
Wir kürzen den Bruch mit <math>\sqrt{x+1}+\sqrt{x}</math> und erhalten | Wir kürzen den Bruch mit <math>\sqrt{x+1}+\sqrt{x}</math> und erhalten |
Aktuelle Version
Als ersten Schritt berechnen wir die Ableitung der äußeren Logarithmusfunktion.
\displaystyle \frac{d}{dx}\,\ln\bigl( \bbox[#FFEEAA;,1.5pt]{\sqrt{x}+\sqrt{x+1}} \bigr) = {}\rlap{\frac{1}{\bbox[#FFEEAA;,1.5pt]{\sqrt{x}+\sqrt{x+1}}}\cdot \bigl( \bbox[#FFEEAA;,1.5pt]{\sqrt{x}+\sqrt{x+1}} \bigr)'\,\textrm{}}\phantom{\frac{1}{\sqrt{x}+\sqrt{x+1}}\cdot \Bigl[\frac{1}{2\sqrt{x}}+\frac{1}{2\sqrt{x+1}}\cdot (x+1)'\Bigr]} |
Wir leiten den Ausdruck \displaystyle \sqrt{x}+\sqrt{x+1} Term für Term ab und erhalten
\displaystyle \phantom{\frac{d}{dx}\,\ln\bigl( \bbox[#FFEEAA;,1.5pt]{\sqrt{x}+\sqrt{x+1}} \bigr)}{} = {}\rlap{\frac{1}{\sqrt{x}+\sqrt{x+1}}\cdot \bigl[ (\sqrt{x})' + (\sqrt{x+1})'\bigr]\textrm{.}}\phantom{\frac{1}{\sqrt{x}+\sqrt{x+1}}\cdot \Bigl[\frac{1}{2\sqrt{x}}+\frac{1}{2\sqrt{x+1}}\cdot (x+1)'\Bigr]} |
Danach leiten wir die Funktionen \displaystyle \sqrt{x} und \displaystyle \sqrt{x+1} direkt ab.
\displaystyle \begin{align}
\phantom{\frac{d}{dx}\,\ln\bigl( \bbox[#FFEEAA;,1.5pt]{\sqrt{x}+\sqrt{x+1}} \bigr)}{} &= \frac{1}{\sqrt{x}+\sqrt{x+1}}\cdot \Bigl[\frac{1}{2\sqrt{x}}+\frac{1}{2\sqrt{x+1}}\cdot (x+1)'\Bigr]\\[5pt] &= \frac{1}{\sqrt{x}+\sqrt{x+1}}\cdot \Bigl[\frac{1}{2\sqrt{x}}+\frac{1}{2\sqrt{x+1}}\cdot 1\Bigr]\,\textrm{} \end{align} |
Schreiben wir die Brüche mit gemeinsamen Nenner erhalten wir
\displaystyle \phantom{\frac{d}{dx}\,\ln\bigl( \bbox[#FFEEAA;,1.5pt]{\sqrt{x}+\sqrt{x+1}} \bigr)}{}
= {}\rlap{\frac{1}{\sqrt{x}+\sqrt{x+1}}\cdot \Bigl[\frac{\sqrt{x+1}+\sqrt{x}}{2\sqrt{x}\sqrt{x+1}} \Bigr]\,.}\phantom{\frac{1}{\sqrt{x}+\sqrt{x+1}}\cdot \Bigl[\frac{1}{2\sqrt{x}}+\frac{1}{2\sqrt{x+1}}\cdot (x+1)'\Bigr]} |
Wir kürzen den Bruch mit \displaystyle \sqrt{x+1}+\sqrt{x} und erhalten
\displaystyle \phantom{\frac{d}{dx}\,\ln\bigl( \bbox[#FFEEAA;,1.5pt]{\sqrt{x}+\sqrt{x+1}} \bigr)}{}
= {}\rlap{\frac{1}{2\sqrt{x}\sqrt{x+1}}\,\textrm{.}}\phantom{\frac{1}{\sqrt{x}+\sqrt{x+1}}\cdot \Bigl[\frac{1}{2\sqrt{x}}+\frac{1}{2\sqrt{x+1}}\cdot (x+1)'\Bigr]} |