Lösung 2.2:4b
Aus Online Mathematik Brückenkurs 2
K (Solution 2.2:4b moved to Lösung 2.2:4b: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | + | Es wäre möglich die Substitution <math>u=x-1</math> zu machen, aber dies würde nicht das Problem mit den Term 3 lösen. Wir ziehen statt dessen den Faktor 3 aus den Nenner | |
{{Abgesetzte Formel||<math>\begin{align} | {{Abgesetzte Formel||<math>\begin{align} | ||
Zeile 7: | Zeile 7: | ||
\end{align}</math>}} | \end{align}</math>}} | ||
- | + | und schieben den Faktor <math>\tfrac{1}{3}</math> in die Quadrate <math>(x-1)^2</math>, | |
{{Abgesetzte Formel||<math>\frac{1}{3}\int \frac{dx}{\tfrac{1}{3}(x-1)^2+1} = \frac{1}{3}\int \frac{dx}{\Bigl(\dfrac{x-1}{\sqrt{3}}\Bigr)^2+1}\,\textrm{.}</math>}} | {{Abgesetzte Formel||<math>\frac{1}{3}\int \frac{dx}{\tfrac{1}{3}(x-1)^2+1} = \frac{1}{3}\int \frac{dx}{\Bigl(\dfrac{x-1}{\sqrt{3}}\Bigr)^2+1}\,\textrm{.}</math>}} | ||
- | + | Jetzt machen wir die Substitution <math>u = (x-1)/\!\sqrt{3}</math> und erhalten | |
{{Abgesetzte Formel||<math>\begin{align} | {{Abgesetzte Formel||<math>\begin{align} |
Version vom 13:45, 5. Mai 2009
Es wäre möglich die Substitution \displaystyle u=x-1 zu machen, aber dies würde nicht das Problem mit den Term 3 lösen. Wir ziehen statt dessen den Faktor 3 aus den Nenner
\displaystyle \begin{align}
\int \frac{dx}{(x-1)^2+3} &= \int \frac{dx}{3\bigl(\tfrac{1}{3}(x-1)^2+1\bigr)}\\[5pt] &= \frac{1}{3}\int \frac{dx}{\tfrac{1}{3}(x-1)^2+1} \end{align} |
und schieben den Faktor \displaystyle \tfrac{1}{3} in die Quadrate \displaystyle (x-1)^2,
\displaystyle \frac{1}{3}\int \frac{dx}{\tfrac{1}{3}(x-1)^2+1} = \frac{1}{3}\int \frac{dx}{\Bigl(\dfrac{x-1}{\sqrt{3}}\Bigr)^2+1}\,\textrm{.} |
Jetzt machen wir die Substitution \displaystyle u = (x-1)/\!\sqrt{3} und erhalten
\displaystyle \begin{align}
\frac{1}{3}\int \frac{dx}{\Bigl(\dfrac{x-1}{\sqrt{3}}\Bigr)^2+1} &= \left\{\begin{align} u &= (x-1)/\!\sqrt{3}\\[5pt] du &= dx/\!\sqrt{3} \end{align}\right\}\\[5pt] &= \frac{1}{3}\int \frac{\sqrt{3}\,du}{u^2+1}\\[5pt] &= \frac{\sqrt{3}}{3}\int \frac{du}{u^2+1}\\[5pt] &= \frac{1}{\sqrt{3}}\arctan u + C\\[5pt] &= \frac{1}{\sqrt{3}}\arctan \frac{x-1}{\sqrt{3}} + C\,\textrm{.} \end{align} |