Lösung 2.3:1b
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
K (Solution 2.3:1b moved to Lösung 2.3:1b: Robot: moved page) |
Version vom 10:26, 11. Mär. 2009
If we look at the formula for integration by parts,
\displaystyle \int f(x)g(x)\,dx = F(x)g(x) - \int F(x)g'(x)\,dx\,, |
we see that if we choose \displaystyle f(x)=\sin x and \displaystyle g(x)=x+1, then the factor \displaystyle g(x) will be differentiated to a constant on the right-hand side of the integral. Naturally, this presupposes that we can find a primitive function for \displaystyle f(x) (which we can) and that we can then integrate it. Let's try!
\displaystyle \begin{align}
\int (x+1)\sin x\,dx &= (x+1)\cdot (-\cos x) - \int 1\cdot (-\cos x)\,dx\\[5pt] &= -(x+1)\cos x + \int \cos x\,dx\\[5pt] &= -(x+1)\cos x + \sin x + C\,\textrm{.} \end{align} |