Lösung 3.4:2

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
If the equation has the root <math>z=1</math>, this means, according to the factor rule, that the equation must contain the factor <math>z-1</math>, i.e. the polynomial on the left-hand side can be written as
If the equation has the root <math>z=1</math>, this means, according to the factor rule, that the equation must contain the factor <math>z-1</math>, i.e. the polynomial on the left-hand side can be written as
-
{{Displayed math||<math>z^3-3z^2+4z-2 = (z^2+Az+B)(z-1)</math>}}
+
{{Abgesetzte Formel||<math>z^3-3z^2+4z-2 = (z^2+Az+B)(z-1)</math>}}
for some constants <math>A</math> and <math>B</math>. We can determine the second unknown factor using polynomial division,
for some constants <math>A</math> and <math>B</math>. We can determine the second unknown factor using polynomial division,
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
z^2+Az+B
z^2+Az+B
&= \frac{z^3-3z^2+4z-2}{z-1}\\[5pt]
&= \frac{z^3-3z^2+4z-2}{z-1}\\[5pt]
Zeile 20: Zeile 20:
Thus, the equation can be written as
Thus, the equation can be written as
-
{{Displayed math||<math>(z-1)(z^2-2z+2) = 0\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>(z-1)(z^2-2z+2) = 0\,\textrm{.}</math>}}
The advantage of writing the equation in this factorized form is that we can now conclude that the equation's two other roots must be zeros of the factor
The advantage of writing the equation in this factorized form is that we can now conclude that the equation's two other roots must be zeros of the factor
Zeile 27: Zeile 27:
Hence, we determine the roots by solving the equation
Hence, we determine the roots by solving the equation
-
{{Displayed math||<math>z^2-2z+2 = 0\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>z^2-2z+2 = 0\,\textrm{.}</math>}}
Completing the square gives
Completing the square gives
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
(z-1)^2-1^2+2 &= 0\,,\\[5pt]
(z-1)^2-1^2+2 &= 0\,,\\[5pt]
(z-1)^2 &= -1\,,
(z-1)^2 &= -1\,,
Zeile 68: Zeile 68:
Note: Writing
Note: Writing
-
{{Displayed math||<math>z^3-3z^2+4z-2 = \bigl((z-3)z+4\bigr)z-2</math>}}
+
{{Abgesetzte Formel||<math>z^3-3z^2+4z-2 = \bigl((z-3)z+4\bigr)z-2</math>}}
is known as the Horner scheme and is used to reduce the amount of the arithmetical work.
is known as the Horner scheme and is used to reduce the amount of the arithmetical work.

Version vom 13:15, 10. Mär. 2009

If the equation has the root \displaystyle z=1, this means, according to the factor rule, that the equation must contain the factor \displaystyle z-1, i.e. the polynomial on the left-hand side can be written as

\displaystyle z^3-3z^2+4z-2 = (z^2+Az+B)(z-1)

for some constants \displaystyle A and \displaystyle B. We can determine the second unknown factor using polynomial division,

\displaystyle \begin{align}

z^2+Az+B &= \frac{z^3-3z^2+4z-2}{z-1}\\[5pt] &= \frac{z^3-z^2+z^2-3z^2+4z-2}{z-1}\\[5pt] &= \frac{z^2(z-1)-2z^2+4z-2}{z-1}\\[5pt] &= z^2 + \frac{-2z^2+4z-2}{z-1}\\[5pt] &= z^2 + \frac{-2z^2+2z-2z+4z-2}{z-1}\\[5pt] &= z^2 + \frac{-2z(z-1)+2z-2}{z-1}\\[5pt] &= z^2 - 2z + \frac{2z-2}{z-1}\\[5pt] &= z^2 - 2z + \frac{2(z-1)}{z-1}\\[5pt] &= z^2 - 2z + 2\,\textrm{.} \end{align}

Thus, the equation can be written as

\displaystyle (z-1)(z^2-2z+2) = 0\,\textrm{.}

The advantage of writing the equation in this factorized form is that we can now conclude that the equation's two other roots must be zeros of the factor \displaystyle z^2-2z+2. This is because the left-hand side is zero only when at least one of the factors \displaystyle z-1 or \displaystyle z^2-2z+2 is zero, and we see directly that \displaystyle z-1 is zero only when \displaystyle z=1\,.

Hence, we determine the roots by solving the equation

\displaystyle z^2-2z+2 = 0\,\textrm{.}

Completing the square gives

\displaystyle \begin{align}

(z-1)^2-1^2+2 &= 0\,,\\[5pt] (z-1)^2 &= -1\,, \end{align}

and taking the root gives that \displaystyle z-1=\pm i, i.e. \displaystyle z=1-i and \displaystyle z=1+i\,.

The equation's other roots are \displaystyle z=1-i and \displaystyle z=1+i\,.


As an extra check, we investigate whether \displaystyle z = 1 \pm i really are roots of the equation.

\displaystyle \begin{align} z = 1+i:\quad z^3-3z^2+4z-2 &= \bigl((z-3)z+4\bigr)z-2\\[5pt] &= \bigl((1+i-3)(1+i)+4\bigr)(1+i)-2\\[5pt] &= \bigl((-2+i)(1+i)+4\bigr)(1+i)-2\\[5pt] &= (-2+i-2i-1+4)(1+i)-2\\[5pt] &= (1-i)(1+i)-2\\[5pt] &= 1^2 - i^2 - 2\\[5pt] &= 1+1-2\\[5pt] &= 0\,,\\[10pt] z = 1-i:\quad z^3-3z^2+4z-2 &= \bigl((z-3)z+4\bigr)z-2\\[5pt] &= \bigl((1-i-3)(1-i)+4\bigr)(1-i)-2\\[5pt] &= \bigl((-2-i)(1-i)+4\bigr)(1-i)-2\\[5pt] &= (-2-i+2i-1+4)(1-i)-2\\[5pt] &= (1+i)(1-i)-2\\[5pt] &= 1^2-i^2-2\\[5pt] &= 1+1-2\\[5pt] &= 0\,\textrm{.} \end{align}


Note: Writing

\displaystyle z^3-3z^2+4z-2 = \bigl((z-3)z+4\bigr)z-2

is known as the Horner scheme and is used to reduce the amount of the arithmetical work.