Lösung 3.3:4d

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
To avoid having <math>z</math> in the denominator, we multiply both sides of the equation by <math>z</math>,
To avoid having <math>z</math> in the denominator, we multiply both sides of the equation by <math>z</math>,
-
{{Displayed math||<math>1+z^2=\frac{1}{2}\,z\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>1+z^2=\frac{1}{2}\,z\,\textrm{.}</math>}}
This multiplication could possibly introduce a spurious root if it turns out that the new equation has <math>z=0</math> as a root. The old equation, for understandable reasons, doesn't have <math>z=0</math> as a solution.
This multiplication could possibly introduce a spurious root if it turns out that the new equation has <math>z=0</math> as a root. The old equation, for understandable reasons, doesn't have <math>z=0</math> as a solution.
Zeile 7: Zeile 7:
If we move the terms over to the left-hand side and complete the square, we get
If we move the terms over to the left-hand side and complete the square, we get
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
z^2 - \frac{1}{2}\,z + 1 &= 0\,,\\[5pt]
z^2 - \frac{1}{2}\,z + 1 &= 0\,,\\[5pt]
\Bigl(z-\frac{1}{4}\Bigr)^2 - \Bigl(\frac{1}{4}\Bigr)^2 + 1 &= 0\,,\\[5pt]
\Bigl(z-\frac{1}{4}\Bigr)^2 - \Bigl(\frac{1}{4}\Bigr)^2 + 1 &= 0\,,\\[5pt]
Zeile 15: Zeile 15:
This gives that the equation has solutions
This gives that the equation has solutions
-
{{Displayed math||<math>z=\frac{1}{4}+i\,\frac{\sqrt{15}}{4}\quad</math> and <math>\quad z=\frac{1}{4}-i\,\frac{\sqrt{15}}{4}\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>z=\frac{1}{4}+i\,\frac{\sqrt{15}}{4}\quad</math> and <math>\quad z=\frac{1}{4}-i\,\frac{\sqrt{15}}{4}\,\textrm{.}</math>}}
None of these solutions are equal to zero, so these are also solutions to the original equation.
None of these solutions are equal to zero, so these are also solutions to the original equation.

Version vom 13:13, 10. Mär. 2009

To avoid having \displaystyle z in the denominator, we multiply both sides of the equation by \displaystyle z,

\displaystyle 1+z^2=\frac{1}{2}\,z\,\textrm{.}

This multiplication could possibly introduce a spurious root if it turns out that the new equation has \displaystyle z=0 as a root. The old equation, for understandable reasons, doesn't have \displaystyle z=0 as a solution.

If we move the terms over to the left-hand side and complete the square, we get

\displaystyle \begin{align}

z^2 - \frac{1}{2}\,z + 1 &= 0\,,\\[5pt] \Bigl(z-\frac{1}{4}\Bigr)^2 - \Bigl(\frac{1}{4}\Bigr)^2 + 1 &= 0\,,\\[5pt] \Bigl(z-\frac{1}{4}\Bigr)^2 + \frac{15}{16} &= 0\,\textrm{.} \end{align}

This gives that the equation has solutions

\displaystyle z=\frac{1}{4}+i\,\frac{\sqrt{15}}{4}\quad and \displaystyle \quad z=\frac{1}{4}-i\,\frac{\sqrt{15}}{4}\,\textrm{.}

None of these solutions are equal to zero, so these are also solutions to the original equation.

We substitute the solutions into the original equations to assure ourselves that we have calculated correctly.

\displaystyle \begin{align} z=\frac{1}{4}-i\,\frac{\sqrt{15}}{4}:\quad \text{LHS} &= \frac{1}{\dfrac{1}{4}-i\dfrac{\sqrt{15}}{14}} + \frac{1}{4} - i\frac{\sqrt{15}}{4}\\[5pt] &= \frac{\dfrac{1}{4}+i\dfrac{\sqrt{15}}{4}}{\Bigl(\dfrac{1}{4} - i\dfrac{\sqrt{15}}{4}\,\Bigr)\Bigl(\dfrac{1}{4} + i\,\dfrac{\sqrt{15}}{4}\Bigr)} + \frac{1}{4} - i\frac{\sqrt{15}}{4}\\[5pt] &= \frac{\dfrac{1}{4}+i\dfrac{\sqrt{15}}{4}}{\dfrac{1}{16}+\dfrac{15}{16}}+\frac{1}{4}-i\frac{\sqrt{15}}{4}\\[5pt] &= \frac{1}{4} + i\frac{\sqrt{15}}{4} + \frac{1}{4} - i\frac{\sqrt{15}}{4}\\[5pt] &= \frac{1}{2}\\[5pt] &= \text{RHS,}\\[10pt] z={}\rlap{\frac{1}{4}+i\frac{\sqrt{15}}{4}:}\phantom{\frac{1}{4}-i\,\frac{\sqrt{15}}{4}:}{}\quad \text{LHS} &= \frac{1}{\dfrac{1}{4}+i\dfrac{\sqrt{15}}{14}} + \frac{1}{4} + i\frac{\sqrt{15}}{4}\\[5pt] &= \frac{\dfrac{1}{4}-i\dfrac{\sqrt{15}}{4}}{\Bigl(\dfrac{1}{4}+i\dfrac{\sqrt{15}}{4}\Bigr)\Bigl(\dfrac{1}{4}-i\dfrac{\sqrt{15}}{4}\Bigr)} + \frac{1}{4} + i\frac{\sqrt{15}}{4}\\[5pt] &= \frac{\dfrac{1}{4}-i\dfrac{\sqrt{15}}{4}}{\dfrac{1}{16}+\dfrac{15}{16}} + \frac{1}{4} + i\frac{\sqrt{15}}{4}\\[5pt] &= \frac{1}{4} - i\frac{\sqrt{15}}{4} + \frac{1}{4} + i\frac{\sqrt{15}}{4}\\[5pt] &= \frac{1}{2}\\[5pt] &= \text{RHS.} \end{align}