Lösung 3.3:3c
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 1: | Zeile 1: | ||
If we take the minus sign out in front of the whole expression, | If we take the minus sign out in front of the whole expression, | ||
- | {{ | + | {{Abgesetzte Formel||<math>-\bigl(z^2+2iz-4z-1\bigr)\,,</math>}} |
and collect together the first-degree terms, | and collect together the first-degree terms, | ||
- | {{ | + | {{Abgesetzte Formel||<math>-\bigl(z^2+(-4+2i)z-1\bigr)\,,</math>}} |
we can then complete the square of the expression inside the outer bracket, | we can then complete the square of the expression inside the outer bracket, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
-\bigl(z^2+(-4+2i)z-1\bigr) | -\bigl(z^2+(-4+2i)z-1\bigr) | ||
&= -\Bigl(\Bigl(z+\frac{-4+2i}{2}\Bigr)^2-\Bigl(\frac{-4+2i}{2}\Bigr)^2-1\Bigr)\\[5pt] | &= -\Bigl(\Bigl(z+\frac{-4+2i}{2}\Bigr)^2-\Bigl(\frac{-4+2i}{2}\Bigr)^2-1\Bigr)\\[5pt] |
Version vom 13:12, 10. Mär. 2009
If we take the minus sign out in front of the whole expression,
\displaystyle -\bigl(z^2+2iz-4z-1\bigr)\,, |
and collect together the first-degree terms,
\displaystyle -\bigl(z^2+(-4+2i)z-1\bigr)\,, |
we can then complete the square of the expression inside the outer bracket,
\displaystyle \begin{align}
-\bigl(z^2+(-4+2i)z-1\bigr) &= -\Bigl(\Bigl(z+\frac{-4+2i}{2}\Bigr)^2-\Bigl(\frac{-4+2i}{2}\Bigr)^2-1\Bigr)\\[5pt] &= -\bigl((z-2+i)^2-(-2+i)^2-1\bigr)\\[5pt] &= -\bigl((z-2+i)^2-(-2)^2+4i-i^2-1\bigr)\\[5pt] &= -\bigl((z-2+i)^2-4+4i+1-1\bigr)\\[5pt] &= -\bigl((z-2+i)^2-4+4i\bigr)\\[5pt] &= -(z-2+i)^2+4-4i\,\textrm{.} \end{align} |