Lösung 3.2:6d
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
			  			                                                      
		          
			| K  | K  (Robot: Automated text replacement  (-{{Displayed math +{{Abgesetzte Formel)) | ||
| Zeile 1: | Zeile 1: | ||
| We can determine the number's magnitude directly using the distance formula, | We can determine the number's magnitude directly using the distance formula, | ||
| - | {{ | + | {{Abgesetzte Formel||<math>\begin{align} | 
| \bigl|\sqrt{10}+\sqrt{30}i\bigr| | \bigl|\sqrt{10}+\sqrt{30}i\bigr| | ||
| &= \sqrt{\bigl(\sqrt{10}\,\bigr)^2+\bigl(\sqrt{30}\,\bigr)^2}\\[5pt] | &= \sqrt{\bigl(\sqrt{10}\,\bigr)^2+\bigl(\sqrt{30}\,\bigr)^2}\\[5pt] | ||
| Zeile 16: | Zeile 16: | ||
| The polar form is | The polar form is | ||
| - | {{ | + | {{Abgesetzte Formel||<math>2\sqrt{10}\Bigl( \cos\frac{\pi}{3} + i\sin\frac{\pi}{3} \Bigr)\,\textrm{.}</math>}} | 
Version vom 13:10, 10. Mär. 2009
We can determine the number's magnitude directly using the distance formula,
| \displaystyle \begin{align} \bigl|\sqrt{10}+\sqrt{30}i\bigr| &= \sqrt{\bigl(\sqrt{10}\,\bigr)^2+\bigl(\sqrt{30}\,\bigr)^2}\\[5pt] &= \sqrt{10+30}\\[5pt] &= \sqrt{40}\\[5pt] &= \sqrt{4\cdot 10}\\[5pt] &= 2\sqrt{10}\,\textrm{.} \end{align} | 
In addition, the number lies in the first quadrant and we can therefore determine the argument using simple trigonometry.
The polar form is
| \displaystyle 2\sqrt{10}\Bigl( \cos\frac{\pi}{3} + i\sin\frac{\pi}{3} \Bigr)\,\textrm{.} | 
 
		  

