Lösung 3.2:6d

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
We can determine the number's magnitude directly using the distance formula,
We can determine the number's magnitude directly using the distance formula,
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
\bigl|\sqrt{10}+\sqrt{30}i\bigr|
\bigl|\sqrt{10}+\sqrt{30}i\bigr|
&= \sqrt{\bigl(\sqrt{10}\,\bigr)^2+\bigl(\sqrt{30}\,\bigr)^2}\\[5pt]
&= \sqrt{\bigl(\sqrt{10}\,\bigr)^2+\bigl(\sqrt{30}\,\bigr)^2}\\[5pt]
Zeile 16: Zeile 16:
The polar form is
The polar form is
-
{{Displayed math||<math>2\sqrt{10}\Bigl( \cos\frac{\pi}{3} + i\sin\frac{\pi}{3} \Bigr)\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>2\sqrt{10}\Bigl( \cos\frac{\pi}{3} + i\sin\frac{\pi}{3} \Bigr)\,\textrm{.}</math>}}

Version vom 13:10, 10. Mär. 2009

We can determine the number's magnitude directly using the distance formula,

\displaystyle \begin{align}

\bigl|\sqrt{10}+\sqrt{30}i\bigr| &= \sqrt{\bigl(\sqrt{10}\,\bigr)^2+\bigl(\sqrt{30}\,\bigr)^2}\\[5pt] &= \sqrt{10+30}\\[5pt] &= \sqrt{40}\\[5pt] &= \sqrt{4\cdot 10}\\[5pt] &= 2\sqrt{10}\,\textrm{.} \end{align}

In addition, the number lies in the first quadrant and we can therefore determine the argument using simple trigonometry.

Image:3_2_6_d_bild.gif Image:3_2_6_d_bildtext.gif

The polar form is

\displaystyle 2\sqrt{10}\Bigl( \cos\frac{\pi}{3} + i\sin\frac{\pi}{3} \Bigr)\,\textrm{.}