Lösung 3.2:4c
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 1: | Zeile 1: | ||
One way to determine the magnitude is to calculate the product <math>(3-4i)(3+2i)</math> and then to take the magnitude of the result, but for products we have that | One way to determine the magnitude is to calculate the product <math>(3-4i)(3+2i)</math> and then to take the magnitude of the result, but for products we have that | ||
- | {{ | + | {{Abgesetzte Formel||<math>|zw| = |z|\cdot |w|</math>}} |
and we can take the magnitude of the factors <math>3-4i</math> and <math>3+2i</math> and then multiply the magnitudes together, | and we can take the magnitude of the factors <math>3-4i</math> and <math>3+2i</math> and then multiply the magnitudes together, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
|(3-4i)(3+2i)| | |(3-4i)(3+2i)| | ||
&= |3-4i|\cdot |3+2i|\\[5pt] | &= |3-4i|\cdot |3+2i|\\[5pt] |
Version vom 13:08, 10. Mär. 2009
One way to determine the magnitude is to calculate the product \displaystyle (3-4i)(3+2i) and then to take the magnitude of the result, but for products we have that
\displaystyle |zw| = |z|\cdot |w| |
and we can take the magnitude of the factors \displaystyle 3-4i and \displaystyle 3+2i and then multiply the magnitudes together,
\displaystyle \begin{align}
|(3-4i)(3+2i)| &= |3-4i|\cdot |3+2i|\\[5pt] &= \sqrt{3^2+(-4)^2}\cdot\sqrt{3^2+2^2}\\[5pt] &= \sqrt{9+16}\sqrt{9+4}\\[5pt] &= \sqrt{25}\sqrt{13}\\[5pt] &= 5\sqrt{13}\,\textrm{.} \end{align} |